Journal of the American Chemical Society
Article
Scheme 7. Low Loading Borylation of an Electron-Rich
Substrate
ACKNOWLEDGMENTS
■
We thank the NSF (GOALI-1012883), Merck Research
Laboratories New Technologies Review & Licensing Commit-
tee (NT-RLC), and the ACS Green Chemistry Institute
Pharmaceutical Roundtable for generous financial support.
REFERENCES
■
(1) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(2) Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M.
R., III Science 2002, 295, 305.
(3) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura,
N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
(4) (a) Vanchura, B. A., II; Preshlock, S. M.; Roosen, P. C.; Kallepalli,
V. A.; Staples, R. J.; Maleczka, R. E., Jr.; Singleton, D. A.; Smith, M. R.,
III Chem. Commun. 2010, 46, 7724. (b) Tamura, H.; Yamazaki, H.;
Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2003, 125, 16114.
(5) Chotana, G. A.; Vanchura, B. A., II; Tse, M. K.; Staples, R. J.;
Maleczka, R. E., Jr.; Smith, M. R., III Chem. Commun. 2009, 5731.
(6) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem.,
Int. Ed. 2002, 41, 3056.
(7) Hartwig and co-workers have shown that the combination of
precatalyst 3 and dtbpy outperforms complex 1 as well as in situ
generated catalyst from complex 2 and dtbpy in the borylation of
benzene-d6 with B2pin2 at 100 °C (ref 3). In contrast to the current
study, the reactions were carried out with scrupulously dried reagents
and solvents.
setting the ligand to Ir ratio to 2:1 according to the data in
Figure 7.
SUMMARY
■
The following conclusions can be drawn from this study:
(1) Efficiencies of room temperature borylations are sensitive
to order of addition as a function of precatalyst and
boron reagent. Specifically, borylations with [IrCl(cod)]2
are effective only with HBpin, which must be added to
the precatalyst prior to addition of dipyridyl coligands.
(2) At elevated temperatures, order of addition had minimal
influence on borylation efficiency.
(3) The most commonly used dipyridyl ligand, dtbpy, is
outperformed by 3,4,7,8-tetramethyl-1,10-phenanthroline
and in one case by a 1,2-diphosphino benzene,
particularly for borylation of electron-rich substrates at
elevated temperatures.
(8) (a) The following articles on C−H borylation have been
published since the review article cited in ref 1: Kallepalli, V. A.;
Sanchez, L.; Li, H.; Gesmundo, N. J.; Turton, C. L.; Maleczka, R. E.,
Jr.; Smith, M. R., III Heterocycles 2010, 80, 1429. (b) Liskey, C. W.;
Liao, X. B.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 11389.
(c) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc.
2010, 132, 4068. (d) Yamazaki, K.; Kawamorita, S.; Ohmiya, H.;
Sawamura, M. Org. Lett. 2010, 12, 3978. (e) Itoh, H.; Kikuchi, T.;
Ishiyama, T.; Miyaura, N. Chem. Lett. 2011, 40, 1007. (f) Li, G. Q.;
Kiyomura, S.; Yamamoto, Y.; Miyaura, N. Chem. Lett. 2011, 40, 702.
(g) Liao, X. B.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2011,
133, 2088. (h) Nguyen, D. H.; Perez-Torrente, J. J.; Lomba, L.;
Jimenez, M. V.; Lahoz, F. J.; Oro, L. A. Dalton Trans. 2011, 40, 8429.
(i) Norberg, A. M.; Smith, M. R., III; Maleczka, R. E., Jr. Synthesis
2011, 857. (j) Ozawa, R.; Yoza, K.; Kobayashi, K. Chem. Lett. 2011, 40,
941. (k) Ros, A.; Estepa, B.; Lopez-Rodriguez, R.; Alvarez, E.;
Fernandez, R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, 50, 11724.
(l) Teraoka, T.; Hiroto, S.; Shinokubo, H. Org. Lett. 2011, 13, 2532.
(m) Cheng, J. H.; Yi, C. L.; Liu, T. J.; Lee, C. F. Chem. Commun. 2012,
48, 8440. (n) Crawford, A. G.; Liu, Z. Q.; Mkhalid, I. A. I.; Thibault,
M. H.; Schwarz, N.; Alcaraz, G.; Steffen, A.; Collings, J. C.; Batsanov,
A. S.; Howard, J. A. K.; Marder, T. B. Chem.Eur. J. 2012, 18, 5022.
(o) Eliseeva, M. N.; Scott, L. T. J. Am. Chem. Soc. 2012, 134, 15169.
(p) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. (q) Hitosugi, S.;
Nakamura, Y.; Matsuno, T.; Nakanishi, W.; Isobe, H. Tetrahedron Lett.
2012, 53, 1180. (r) Hume, P.; Furkert, D. P.; Brimble, M. A.
Tetrahedron Lett. 2012, 53, 3771. (s) Liskey, C. W.; Hartwig, J. F. J.
Am. Chem. Soc. 2012, 134, 12422. (t) Liu, T. F.; Shao, X. X.; Wu, Y.
M.; Shen, Q. L. Angew. Chem., Int. Ed. 2012, 51, 540. (u) Ohmura, T.;
Torigoe, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 17416.
(v) Robbins, D. W.; Hartwig, J. F. Org. Lett. 2012, 14, 4266.
(w) Roering, A. J.; Hale, L. V. A.; Squier, P. A.; Ringgold, M. A.;
Wiederspan, E. R.; Clark, T. B. Org. Lett. 2012, 14, 3558. (x) Roosen,
P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka,
R. E., Jr.; Smith, M. R., III J. Am. Chem. Soc. 2012, 134, 11350. (y) Ros,
A.; Lopez-Rodriguez, R.; Estepa, B.; Alvarez, E.; Fernandez, R.;
Lassaletta, J. M. J. Am. Chem. Soc. 2012, 134, 4573. (z) Wang, C.;
Sperry, J. J. Org. Chem. 2012, 77, 2584. (aa) Bruck, A.; Gallego, D.;
Wang, W. Y.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed.
2012, 51, 11478. (ab) Partridge, B. M.; Hartwig, J. F. Org. Lett. 2012,
(4) Borylations with tmphen are highly efficient with B2pin2
or HBpin. Thus, reactions with B2pin2 are more atom
economical with tmphen because both boron equivalents
can be transferred.
(5) Polar solvents can be excellent candidates for C−H
borylation.
(6) Ir loadings for in situ generated catalysts can be lowered
significantly if the number of ligand equivalents per Ir is
increased.
(7) Ligands with constrained geometries exhibit superior
performance.
(8) By using appropriate precatalysts, ligands, boron
reagents, solvents, and conditions, substrates that
performed poorly under standard practices could be
borylated efficiently.
ASSOCIATED CONTENT
* Supporting Information
Full characterization, copies of all spectral data, and
experimental procedures. This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
́ ́
15, 140. (ac) Lopez-Rodríguez, R.; Ros, A.; Fernandez, R.; Lassaletta, J.
J
dx.doi.org/10.1021/ja400295v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX