pubs.acs.org/joc
Direct Amide Synthesis from Either Alcohols or Aldehydes with Amines:
Activity of Ru(II) Hydride and Ru(0) Complexes
Senthilkumar Muthaiah, Subhash Chandra Ghosh, Joo-Eun Jee, Cheng Chen, Jian Zhang,
and Soon Hyeok Hong*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371, Singapore
Received February 12, 2010
An in situ generated catalyst from readily available RuH2(PPh3)4, an N-heterocyclic carbene (NHC)
precursor, NaH, and acetonitrile was developed. The catalyst showed high activity for the amide
synthesis directly from either alcohols or aldehydes with amines. When a mixture of an alcohol and an
aldehyde was reacted with an amine, both of the corresponding amides were obtained with good
yields. Homogeneous Ru(0) complexes such as (η4-1,5-cyclooctadiene)(η6-1,3,5-cyclooctatriene)-
ruthenium [Ru(cod)(cot)] and Ru3(CO)12 were also active in the amidation of an alcohol or an
aldehyde with the help of an in situ generated NHC ligand.
Introduction
oxidative amidation of aldehydes with primary amines has been
reported using Cu,5 Pd,6 Rh,7 Ru,8 and lanthanide9,10 complexes.
Recently, several groups have reported direct amide synthesis
even from alcohols with amines using Ru-,8,11-15 Rh-,16 and Ag-
based17 catalytic systems by liberating two molecules of hydro-
gen.18 The direct acylations of amines with alcohols or aldehydes
are highly desired atom economical transformations that evolve
The amide bond is a key functional group in organic and
biological chemistry.1 Beyond conventional methods toward
the synthesis of amides,2 many alternative strategies have
been reported.3 The importance of the alternative strategies
for the amide synthesis was adequately demonstrated by Tani
and Stoltz for the synthesis of 2-quinuclidonium tetrafluoro-
4
borate using an intramolecular Schmidt-Aube reaction.
Among the alternative strategies, transition-metal-catalyzed
ꢀ
(7) (a) Tillack, A.; Rudloff, I.; Beller, M. Eur. J. Org. Chem. 2001, 523.
(b) Chan, W.-K.; Ho, C.-M.; Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc.
2006, 128, 14796.
(8) Naota, T.; Murahashi, S.-I. Synlett 1991, 693.
(1) (a) Cupido, T.; Tulla-Puche, J.; Spengler, J.; Albericio, F. Curr. Opin.
Drug Discovery Dev. 2007, 10, 768. (b) Bode, J. W. Curr. Opin. Drug
Discovery Dev. 2006, 9, 765. (c) Humphrey, J. M.; Chamberlin, A. R. Chem.
Rev. 1997, 97, 2243.
(2) (a) Han, S.-Y.;Kim, Y.-A. Tetrahedron 2004, 60, 2447. (b)Montalbetti,
C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827. (c) Valeur, E.; Bradley,
M. Chem. Soc. Rev. 2009, 38, 606.
(3) (a) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
2008, 73, 2894. (b) Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday,
R. H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 8460. (c) Park, J. H.;
Kim, S. Y.; Kim, S. M.; Chung, Y. K. Org. Lett. 2007, 9, 2465. (d) Cho, S. H.;
Yoo, E. J.; Bae, L.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046. (e) Cao, L.;
Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Org. Lett. 2009, 11, 3810.
(f) Gnanamgari, D.; Crabtree, R. H. Organometallics 2009, 28, 922.
(9) (a) Seo, S.; Marks, T. J. Org. Lett. 2008, 10, 317. (b) Qian, C.; Zhang,
X.; Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Organometallics 2009, 28, 3856.
(10) Li, J. M.; Xu, F.; Zhang, Y.; Shen, Q. J. Org. Chem. 2009, 74, 2575.
(11) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
(12) Nørdstrom, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008,
130, 17672.
(13) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009,
11, 2667.
(14) Ghosh, S. C.; Muthaiah, S.; Zhang, Y.; Xu, X.; Hong, S. H. Adv.
Synth. Catal. 2009, 351, 2643.
(15) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong, S. H. Organo-
metallics 2010, 29, 1374.
(16) (a) Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi,
€
R. Org. Lett. 2004, 6, 2785. (b) Zweifel, T.; Naubron, J. V.; Grutzmacher, H.
ꢀ
(4) (a) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731. (b) Aube, J.;
Milligan, G. L. J. Am. Chem. Soc. 1991, 113, 8965.
Angew. Chem., Int. Ed. 2009, 48, 559.
(17) Shimizu, K.; Ohshima, K.; Satsuma, A. Chem.;Eur. J. 2009, 15,
(5) Yoo, W.-J.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064.
(6) (a) Suto, Y.; Yamagiwa, N.; Torisawa, Y. Tetrahedron Lett. 2008, 49,
5732. (b) Tamaru, Y.; Yamada, Y.; Yoshida, Z. Synthesis 1983, 474.
9977.
(18) For a recent review, see: Dobereiner, G. E.; Crabtree, R. H. Chem.
Rev. 2010, 110, 681.
3002 J. Org. Chem. 2010, 75, 3002–3006
Published on Web 04/06/2010
DOI: 10.1021/jo100254g
r
2010 American Chemical Society