H.-S. Wang et al. / Tetrahedron Letters 49 (2008) 2634–2637
2637
stirring at 150 °C (entry 6), the reaction of activated phen-
Supplementary data
ylboronic acid (electron-rich) 2d with 1b afforded 45% yield
of product 9 (entry 7), and electron-poor phenylboronic
acid (entry 8) also gave a low yield (52%). We also
explored the reaction of 1a with phenylboronic acid 2c
and 1-naphthylboronic acid 2f, the reaction of 1a with 2f
resulted in a moderate yield after 24 h (entry 10), but only
28% yield of methyl 12-phenyl-13-amino-7-oxo-dehydrode-
isopropylabietate 11 was isolated after 48 h (entry 9).
It is known that DMF–water system is widely used as a
solvent in the Suzuki–Miyaura cross-coupling reaction.9 In
addition, DMF, when heated with water, can generate
hydrogen gas with or without the use of a suitable cata-
lyst.10 It is reasonable to believe that the DMF–water sys-
tem probably served as a hydrogen source in this reaction.
Although, to the best of our knowledge there is no litera-
ture precedent for the Pd-mediated reduction of aromatic
nitro compounds to the corresponding aromatic amines
employing DMF/H2O as a hydrogen source. Thus, we tried
to use DMF/H2O as the hydrogen source to reduce nitro-
benzene in the presence of 3 mol % of Pd(OAc)2, 6 mol %
of DABCO, and 3 equiv of K2CO3. Unfortunately, under
the present reaction conditions, no hydrogenation was
observed after one or two days either under atmospheric
pressure or in the Teflon-lined stainless steel Parr bomb.
As a result, at the moment we cannot offer a definitive
explanation for the process of the reaction and investi-
gations in this reaction are currently underway in our
laboratory.
In conclusion, we have developed a novel and efficient
Pd(OAc)2/DMF/H2O catalyzed Suzuki cross-coupling
reaction with simultaneous reduction of nitro- to amino-
group for synthesizing aryl substituted anilines, especially
polycyclic aromatic amines, which can be prepared
directly from the corresponding nitro-substituted aryl
halides and arylboronic acids in a single step, one-pot
reaction in low to excellent yields. We have also found
that the additive DABCO has a beneficial effect on the
rate and the yield of the reaction. Further efforts to
extend the application of the catalytic system are under-
way in our laboratory.
Supplementary data contains experimental procedure,
X-ray crystallographic files (CIF) for 3 and 4, analytical
data, NMR (1H and 13C NMR), and MS spectrum. Sup-
plementary data associated with this article can be found,
References and notes
1. For reviews see for example: (a) Miyaura, N.; Suzuki, A. Chem. Rev.
1995, 95, 2457; (b) Suzuki, A. In Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim,
1998; (c) Llord-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145;
´
(d) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1395; (e) Bellina, F.; Carpita, A.; Rossi, R.
Synthesis 2004, 15, 2419; (f) Dugger, R. W.; Ragan, J. A.; Ripin, D.
H. B. Org. Process Res. Dev. 2005, 9, 253; (g) Corbet, J.-P.; Mignani,
G. Chem. Rev. 2006, 106, 2651; (h) Yin, L. X.; Liebscher, J. Chem.
Rev. 2007, 107, 133.
2. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
3. (a) Furst, A.; Berlo, R. C.; Hooton, S. Chem. Rev. 1965, 65, 51; (b)
Han, B. H.; Jang, D. G. Tetrahedron Lett. 1990, 31, 1181.
4. (a) Tafesh, A. M.; Weiguny, J. Chem. Rev. 1996, 96, 2035; (b) Liu, X.-
Z.; Liu, S.-W. J. Mol. Catal. A: Chem. 2004, 212, 127.
5. Nacario, R.; Kotakonda, S.; Fouchard, D. M. D.; Tillekeratne, L. M.
V.; Hudson, R. A. Org. Lett. 2005, 7, 471.
6. (a) Capecchi, T.; Koning, C. B.; Michael, J. P. J. Chem. Soc., Perkin
Trans. 1 2000, 16, 2681; (b) Johnson, T. A.; Curtis, M. D.; Beak, P.
Org. Lett. 2002, 4, 2747; (c) Wilkinson, H. S.; Tanouty, G. J.; Wald, S.
A.; Senanayake, C. H. Tetrahedron Lett. 2002, 42, 167.
7. Beaudin, J.; Bourassa, D. E.; Bowles, P.; Castaldi, M. J.; Clay, R.;
Couturier, M. A.; Karrick, G.; Makowski, T. W.; McDermott, R. E.;
Meltz, C. N.; Meltz, M.; Phillips, J. E.; Ragan, J. A.; Ripin, D. H.;
Singer, R. A.; Tucker, J. L.; Wie, L. Org. Process Res. Dev. 2003, 7,
873.
8. For examples, see: (a) Li, J.-H.; Liu, W.-J. Org. Lett. 2004, 6, 2809;
(b) Li, J.-H.; Hu, X.-C.; Liang, Y.; Xie, Y.-X. Tetrahedron 2006, 62,
31; (c) Li, J.-H.; Liu, W.-J.; Xie, Y.-X. J. Org. Chem. 2005, 70, 5409;
(d) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin,
D.-L. J. Org. Chem. 2005, 70, 2832; (e) Li, J.-H.; Zhang, X.-D.; Xie,
Y.-X. Synthesis 2005, 804; (f) Li, J.-H.; Zhang, X.-D.; Xie, Y.-X. Eur.
J. Org. Chem. 2005, 4256; (g) Li, J.-H.; Deng, C.-L.; Liu, W.-J.; Xie,
Y.-X. Synthesis 2005, 3039; (h) Li, J.-H.; Wang, D.-P.; Xie, Y.-X.
Synthesis 2005, 2193.
9. For examples, see: (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org.
Chem. 1995, 60, 7508; (b) Conlon, D. A.; Pipik, B.; Ferdinand, S.;
LeBlond, C. R.; Sowa, J. R.; Izzo, B. Adv. Synth. Catal. 2003, 345,
931; (c) Stevens, P. D.; Fan, J. D.; Gardimalla, H. M. R.; Yen, M.;
Gao, Y. Org. Lett. 2005, 7, 2085; (d) Mino, T.; Shirae, Y.; Sakamoto,
M.; Fujita, T. J. Org. Chem. 2005, 70, 2191; (e) Miao, G.-B.; Ye, P.;
Yu, L.-B.; Baldino, C. M. J. Org. Chem. 2005, 70, 2332; (f) Ishiyama,
T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508; (g) Kim,
J.-H.; Kim, J.-W.; Shokouhimehr, M.; Lee, Y.-S. J. Org. Chem. 2005,
70, 6714.
Acknowledgements
We thank the National Natural Science Foundation of
China (Nos. 20362002 and 20762001), and the Natural
Science Foundation of Guangxi Province (Nos. 0575046
and 0575049).
10. Yu, J. Y.; Shreiner, S.; Vaska, L. Inorg. Chim. Acta 1990, 170, 145.