Please do not adjust margins
Organic & Biomolecular Chemistry
Page 7 of 8
DOI: 10.1039/C7OB02874A
Organic & Biomolecular Chemistry
Paper
10 For excellent reviews, see: (a) Ref. 1c and 1f. For selected
examples, see: (b) Y. Liu, S. Shi, M. Achtenhagen, R. Liu and
M. Szostak, Org. Lett., 2017, 19, 1614; For an elegant study
on using N-acylsuccinimides, see: (c) C. A. Goodman, J. B.
Eagles, L. Rudahindwa, C. G. Hamaker and S. R. Hitchcock,
Synt. Commun., 2013, 43, 2155; See, also: (d) C. A. Goodman,
C. G. Hamaker and S. R. Hitchcock, Tetrahedron Lett., 2013,
54, 6012; (e) C. A. Goodman, E. M. Janci, O. Onwodi, C. C.
Simpson, C. G. Hamaker and S. R. Hitchcock, Tetrahedron
Lett., 2015, 56, 4468; (f) J. E. Taylor, M. D. Jones, J. M. J.
Williams and S. D. Bull, J. Org. Chem., 2012, 77, 2808, and
references cited therein.
11 (a) G. Meng and M. Szostak, Org. Lett., 2015, 17, 4364; (b) G.
Meng and M. Szostak, Org. Biomol. Chem., 2016, 14, 5690.
12 Reviews: (a) R. Takise, K. Muto and J. Yamaguchi, Chem. Soc.
Rev., 2017, 46, 5864; (b) G. Meng, S. Shi and M. Szostak,
Synlett, 2016, 27, 2530; (c) C. Liu and M. Szostak, Chem. Eur.
J., 2017, 23, 7157; (d) Y. Gao, C. L. Ji and X. Hong, Sci. China
Chem., 2017, 60, 1413.
(21472161). M.A. thanks the Chemistry Department (Rutgers
University) for a Summer Undergraduate Fellowship. The
Bruker 500 MHz spectrometer used in this study was
supported by NSF-MRI (CHE-1229030).
Notes and references
1
A. Greenberg, C. M. Breneman and J. F. Liebman, The Amide
Linkage: Structural Significance in Chemistry, Biochemistry,
and Materials Science, Wiley, 2000.
2
Reviews: (a) R. Marcia de Figueiredo, J. S. Suppo and J. M.
Campagne, Chem. Rev., 2016, 116, 12029. (b) A. Ojeda-
Porras and D. Gamba-Sanchez, J. Org. Chem., 2016, 81
,
11548; (c) J. R. Dunetz, J. Magano and G. A. Weisenburger,
Org. Process Res. Dev., 2016, 20, 140; (d) C. L. Allen and J. M.
J. Williams, Chem. Soc. Rev., 2011, 40, 3405; (e) E. Valeur and
M. Bradley, Chem. Soc. Rev., 2009, 38, 606; (f) C. A. G. N.
Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827;
For a review on electrophilic activation of amides: (g) D.
Kaiser and N. Maulide, J. Org. Chem., 2016, 81, 4421; For an
excellent overview of amide coupling, see: (h) S. A. Ruider
and N. Maulide, Angew. Chem. Int. Ed., 2015, 54, 13856
Selected recent reports on amide bonds: (a) N. Caldwell, C.
Jamieson, I. Simpson and A. J. B. Watson, Chem. Commun.,
2015, 51, 9495; (b) R. Y. Zhu, M. E. Farmer, Y. Q. Chen and J.
Q. Yu, Angew. Chem. Int. Ed., 2016, 55, 10578; (c) S. L.
Zultanski, J. Zhao and S. S. Stahl, J. Am. Chem. Soc., 2016,
138, 6416; (d) W. S. Bechara, G. Pelletier and A. B. Charette,
13 (a) V. Pace, W. Holzer, G. Meng, S. Shi, R. Lalancette, R.
Szostak and M. Szostak, Chem. Eur. J., 2016, 22, 14494; (b)
Winkler-Dunitz distortion parameters:
τ (twist angle), χN
(pyramidalization at N) and χC (pyramidalization at C)
describe the magnitude of rotation around the N–C(O) bond,
3
4
pyramidalization at N and C;
τ is 0° for planar amide bonds
and 90° for fully orthogonal bonds; χN and χC are 0° for
planar bonds, and 60° for fully pyramidalized amide bonds.
14 (a) See, Ref. 11. (b) P. Lei, G. Meng and M. Szostak, ACS
Catal., 2017, 7, 1960; (c) P. Lei, G. Meng, Y. Ling, J. An and M.
Szostak, J. Org. Chem., 2017, 82, 6638.
15 S. Shi and M. Szostak, Chem. Eur. J., 2016, 22, 10420.
16 G. Meng and M. Szostak, Angew. Chem. Int. Ed., 2015, 54
14518.
Nat. Chem., 2012, 4, 228; (e) S. Das, D. Addis, S. Zhou, K.
Junge and M. Beller, J. Am. Chem. Soc., 2010, 132, 1770.
For reviews, see: (a) W. D. Loomis and P. K. Stumpf,
Transamination and Transamidation In Nitrogen Metabolism;
E. K. Allen, Ed.; Springer, 1958; (b) M. E. Gonzalez-Rosende,
E. Castillo, J. Lasri and J. Sepulveda-Arques, Prog. React.
Kinet., 2004, 29, 311; For selected examples, see: (c) T. A.
Dineen, M. A. Zajac and A. G. Myers, J. Am. Chem. Soc., 2006,
128, 16406; (d) A. C. Allen, B. N. Atkinson and J. M. Williams,
Angew. Chem. Int. Ed., 2012, 51, 1383; (e) E. Bon, D. C. H.
Bigg and G. Bertrand, J. Org. Chem., 1994, 59, 4035; (f) S. E.
Eldred, D. A. Stone, S. H. Gellman and S. S. Stahl, J. Am.
Chem. Soc., 2003, 125, 3422; (g) T. B. Nguyen, J. Sorres, M.
Q. Tran, L. Ermolenko and A. Al-Mourabit, Org. Lett., 2012,
14, 3202; (h) N. A. Stephenson, J. Zhu, S. H. Gellman and S. S.
Stahl, J. Am. Chem. Soc., 2009, 131, 10003; (i) S. N. Rao, D. C.
Mohan and S. Adimurthy, Org. Lett., 2013, 15, 1496.
,
17 S. Shi, G. Meng and M. Szostak, Angew. Chem. Int. Ed., 2016,
55, 6959.
18 G. Meng and M. Szostak, Org. Lett., 2016, 18, 796.
19 S. Shi and M. Szostak, Org. Lett., 2017, 19, 3095.
20 C. Liu and M. Szostak, Angew. Chem. Int. Ed., 2017, 56
,
12718.
21 H. Yue, L. Guo, H. H. Liao, Y. Cai, C. Zhu and M. Rueping,
Angew. Chem. Int. Ed., 2017, 56, 4282.
22 H. Yue, L. Guo, S. C. Lee, X. Liu and M. Rueping, Angew.
Chem. Int. Ed., 2017, 56, 3972.
23 W. Srimontree, A. Chatupheeraphat, H. H. Liao and M.
Rueping, Org. Lett., 2017, 19, 3091.
24 A. Chatupheeraphat, H. H. Liao, S. C. Lee and M. Rueping,
Org. Lett., 2017, 19, 4255.
25 S. C. Lee, L. Guo, H. Yue, H. H. Liao and M. Rueping, Synlett,
2017, DOI: 10.1055/s-0036-1591495.
26 S. Ni, W. Zhang, H. Mei, J. Han and Y. Pan, Org. Lett., 2017,
19, 2536.
27 For a relevant use of N-acylsuccinimides in Ni/Ir-catalyzed
acyl transfer, see: J. Amani, R.; Alam, S.; Badir and G. A.
Molander, Org. Lett., 2017, 19, 2426.
28 For an excellent mechanistic study on Ni-catalyzed Suzuki
biaryl coupling of N-acyl-glutarimides, see: C. L. Ji and X.
Hong, J. Am. Chem. Soc., 2017, 139, 15522.
5
For enzymatic methods, see: M. V. Sergeeva, V. V. Mozhaev,
J. O. Rich and Y. L. Khmelnitsky, Biotechnol. Lett., 2000, 22,
1419.
6
7
K. Eisenberg, Proc Natl. Acad. Sci. U.S.A., 2003, 100, 11207.
For selected examples, see: Pd catalysis (acyl-Buchwald-
Hartwig reaction): (a) G. Meng, P. Lei and M. Szostak, Org.
Lett., 2017, 19, 2158; (b) S. Shi and M. Szostak, Chem.
Commun., 2017, 53, 10584; Ni catalysis: (c) E. L. Baker, M. M.
Yamano, Y. Zhou, S. M. Anthony and N. K. Garg, Nat.
Commun. 2016,
K. Garg, Chem. Sci., 2017,
Ploeger and X. Hu, ACS Catal., 2017,
7
, 11554; (d) J. E. Dander, E. L. Baker and N.
, 6433; (e) C. W. Cheung, M. L.
, 7092.
8
29 For other select examples of amide cross-coupling by N–C
activation, see: (a) L. Hie, N. F. F. Nathel, T. K. Shah, E. L.
Baker, X. Hong, Y. F. Yang, P. Liu, K. N. Houk and N. K. Garg,
Nature, 2015, 524, 79; (b) J. A. Walker, K. L. Vickerman, J. N.
Humke and L. M. Stanley, J. Am. Chem. Soc. 2017, 139,
10228; (c) Dey, S. Sasmai, K. Seth, G. K. Lahiri and D. Maiti,
7
8
9
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J.
L. Leaser, Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A.
Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem.,
2007,
(a) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480
9, 411.
,
ACS Catal., 2017, 7, 433; (d) H. Liu, H. Yue, J. Jia, L. Guo and
M. Rueping, Chem. Eur. J., 2017, 23, 11771; (e) Y. Bourne-
471; (b) S. D. Roughley and A. M. Jordan, J. Med. Chem.,
2011, 54, 3451; A recent survey indicates that amide bond
formation is the most common reaction in medicinal
chemistry: (c) D. G. Brown and J. Boström, J. Med. Chem.,
2016, 59, 4443.
Branchu, C. Gosmini and G. Danoun, Chem. Eur. J., 2017, 23
10043.
,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins