TUYUN ET AL.
11
Gutierrez, P. L. (2000). The metabolism of quinone-containing alkylating
agents: Free radical production and measurement. Frontiers in Biosci-
ence, 5, D629–D638.
Harrison, J. J., Ceri, H., Stremick, C., & Turner, R. J. (2004). Differences in
biofilm and planktonic cell mediated reduction of metalloid oxyanions.
FEMS Microbiology Letters, 235(2), 357–362.
REFERENCES
Alfadhli, A., Mack, A., Harper, L., Berk, S., Ritchie, C., & Barklis, E. (2016).
Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1
properties. Bioorganic & Medicinal Chemistry, 24(21), 5618–5625.
APEX2, version 2014.1-1, Bruker, 2014, Bruker AXS Inc., Madison, WI.
Bayrak, N., Yildirim, H., Tuyun, A. F., Kara, E. M., Celik, B. O., Gupta, G. K.,
… Nasiri, H. R. (2017). Synthesis, computational study, and evaluation
of in vitro antimicrobial, antibiofilm, and anticancer activities of new
sulfanyl aminonaphthoquinone derivatives. Letters in Drug Design &
Discovery, 14(6), 647–661.
Begleiter, A. (2000). Clinical applications of quinone-containing alkylating
agents. Frontiers in Bioscience, 5, E153–E171.
Carneiro, P. F., Pinto, M. C. R. F., Marra, R. K. F., da Silva, F. D.,
Resende, J. A. L. C., Silva, L. F. R. E., … Ferreira, V. F. (2016). Synthesis
and antimalarial activity of quinones and structurally-related oxirane
derivatives. European Journal of Medicinal Chemistry, 108, 134–140.
Ikeda, T., Wakabayashi, H., Nakane, M. (1991). Benzoquinone antiallergy
and antiinflammatory agents. Patent.
Ilina, T. V., Semenova, E. A., Pronyaeva, T. R., Pokrovskii, A. G.,
Nechepurenko, I. V., Shults, E. E., … Tolstikov, G. A. (2002). Inhibition
of HIV-1 reverse transcriptase by aryl-substituted naphto- and anthra-
quinones. Doklady Biochemistry and Biophysics, 382, 56–59.
Janeczko, M., Demchuk, O. M., Strzelecka, D., Kubinski, K., & Maslyk, M. (2016).
New family of antimicrobial agents derived from 1,4-naphthoquinone.
European Journal of Medicinal Chemistry, 124, 1019–1025.
Jin, Y. R., Ryu, C. K., Moon, C. K., Cho, M. R., & Yun, Y. P. (2004). Inhibitory effects
of j78, a newly synthesized 1,4-naphthoquinone derivative, on experimental
thrombosis and platelet aggregation. Pharmacology, 70(4), 195–200.
Johnson-Ajinwo, O. R., Ullah, I., Mbye, H., Richardson, A., Horrocks, P., &
Li, W. W. (2018). The synthesis and evaluation of thymoquinone ana-
logues as anti-ovarian cancer and antimalarial agents. Bioorganic &
Medicinal Chemistry Letters, 28(7), 1219–1222.
Jordao, A. K., Novais, J., Leal, B., Escobar, A. C., dos Santos, H. M.,
Castro, H. C., & Ferreira, V. F. (2013). Synthesis using microwave irra-
diation and antibacterial evaluation of new N,O-acetals and N,S-
acetals derived from 2-amino-1,4-naphthoquinones. European Journal
of Medicinal Chemistry, 63, 196–201.
Kacmaz, A., Acar, E. T., Atun, G., Kaya, K., Sigirci, B. D., & Bagcigil, F.
(2018). Synthesis, electrochemistry, DFT calculations, antimicrobial proper-
ties and X-ray crystal structures of some NH- and/or S-substituted-1,-
4-quinones. ChemistrySelect, 3(30), 8615–8623.
Kawamukai, M. (2018). Biosynthesis and applications of prenylquinones.
Bioscience Biotechnology and Biochemistry, 82(6), 963–977.
Lien, J. C., Huang, L. J., Teng, C. M., Wang, J. P., & Kuo, S. C. (2002). Syn-
thesis of 2-alkoxy 1,4-naphthoquinone derivatives as antiplatelet,
antiinflammatory, and antiallergic agents. Chemical & Pharmaceutical
Bulletin, 50(5), 672–674.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P.,
Taylor, R., … van De Streek, J. (2006). Mercury: Visualization and anal-
ysis of crystal structures. Journal of Applied Crystallography, 39,
453–457.
Mataraci, E., & Dosler, S. (2012). In vitro activities of antibiotics and anti-
microbial cationic peptides alone and in combination against
methicillin-resistant Staphylococcus aureus biofilms. Antimicrobial
Agents and Chemotherapy, 56(12), 6366–6371.
Castro, F. A. V., Mariani, D., Panek, A. D., Eleutherio, E. C. A.,
&
Pereira, M. D. (2008). Cytotoxicity mechanism of two naph-
thoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae.
PLoS One, 3(12), e3999.
Cerqueira, E. C., Netz, P. A., Diniz, C., do Canto, V. P., & Follmer, C. (2011).
Molecular insights into human monoamine oxidase (MAO) inhibition
by 1,4-naphthoquinone: Evidences for menadione (vitamin K3) acting
as a competitive and reversible inhibitor of MAO. Bioorganic & Medici-
nal Chemistry, 19(24), 7416–7424.
Clinical and Laboratory Standards Institute (CLSI), Reference Method for
Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved
Standard–Second Edition, Wayne, PA, 1997.
Clinical and Laboratory Standards Institute (CLSI), Methods for dilution
antimicrobial susceptibility tests for bacteria that grow aerobically,
Wayne, PA, 2006.
Collett, N. P., Amin, A. R. M. R., Bayraktar, S., Pezzuto, J. M., Shin, D. M.,
Khuri, F. R., … Kucuk, O. (2010). Cancer prevention with natural com-
pounds. Seminars in Oncology, 37(3), 258–281.
Davids, H., Theunissen, R., Chakravorty, S., Mohammed, R., Frost, C., van
Otterlo, W. A. L., & de Koning, C. B. (2012). Aminonaphthoquinones as
potential anti-breast cancer agents. African Journal of Pharmacy and
Pharmacology, 6(45), 3102–3112.
Delarmelina, M., Daltoe, R. D., Cerri, M. F., Madeira, K. P., Rangel, L. B. A.,
Lacerda, V., … Greco, S. J. (2015). Synthesis, antitumor activity and
docking of 2,3-(substituted)-1,4-naphthoquinone derivatives con-
taining nitrogen, oxygen and sulfur. Journal of the Brazilian Chemical
Society, 26(9), 1804–1816.
Donlan, R. M. (2001). Biofilm formation: A clinically relevant microbiologi-
cal process. Clinical Infectious Diseases, 33(8), 1387–1392.
Egleton, J. E., Thinnes, C. C., Seden, P. T., Laurieri, N., Lee, S. P.,
Hadavizadeh, K. S., … Russell, A. J. (2014). Structure–activity relation-
ships and colorimetric properties of specific probes for the putative
cancer biomarker human arylamine N-acetyltransferase 1. Bioorganic &
Medicinal Chemistry, 22(11), 3030–3054.
Nain-Perez, A., Barbosa, L. C. A., Maltha, C. R. A., & Forlani, G. (2016). First
total synthesis and phytotoxic activity of Streptomyces sp. metabolites
abenquines. Tetrahedron Letters, 57(16), 1811–1814.
Nain-Perez, A., Barbosa, L. C. A., Maltha, C. R. A., & Forlani, G. (2017). Natural
abenquines and their synthetic analogues exert algicidal activity against
bloom-forming cyanobacteria. Journal of Natural Products, 80(4), 813–818.
Nain-Perez, A., Barbosa, L. C. A., Maltha, C. R. A., Giberti, S., & Forlani, G.
(2017). Tailoring natural abenquines to inhibit the photosynthetic elec-
tron transport through interaction with the D1 protein in photosystem
II. Journal of Agricultural and Food Chemistry, 65(51), 11304–11311.
Nain-Perez, A., Barbosa, L. C. A., Rodriguez-Hernandez, D., Kramell, A. E.,
Heller, L., & Csuk, R. (2017). Natural abenquines and synthetic ana-
logues: Preliminary exploration of their cytotoxic activity. Bioorganic &
Medicinal Chemistry Letters, 27(5), 1141–1144.
El-Dakhakhany, M. (1963). Studies on the chemical constitution of Egyp-
tian N. sativa L. seeds. Planta Medica, 11, 465–470.
European Centre for Disease Prevention and Control (ECDPC). 2013. Retrieved
European Centre for Disease Prevention and Control (ECDPC). 2014. Anti-
microbial resistance and healthcare-associated infections’, in: Annual
epidemiological report 2014.
Ghannoum, M., & O'Toole, G. A. (2004). Microbial biofilms. Washington,
DC: ASM Press.
Nallapareddy, S. R., Singh, K. V., Sillanpaa, J., Garsin, D. A., Hook, M.,
Erlandsen, S. L., & Murray, B. E. (2006). Endocarditis and biofilm-
associated pili of Enterococcus faecalis. The Journal of Clinical Investiga-
tion, 116, 2799–2807.
Namvar, A. E., Bastarahang, S., Abbasi, N., Ghehi, G. S.,
Farhadbakhtiarian, S., Arezi, P., … Chermahin, S. G. (2014). Clinical
Glamoclija, U., Padhye, S., Spirtovic-Halilovic, S., Osmanovic, A., Veljovic, E.,
Roca, S., … Završnik, D. (2018). Synthesis, biological evaluation and docking
studies of benzoxazoles derived from thymoquinone. Molecules, 23(12),
Article Number: 3297.