4334
Y. Idutsu et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4332–4335
Table 1. Melting temperature (Tm) of bulged-containing duplex DNAs in the presence and absence of compounda
Duplex DNA
Tm(ꢀ)
32.0
Compound
Tm(+)
2Tm
2.6
50-TCCAG_GCAAC-30
30-AGGTCGCGTTG-50
1
34.6
2
3
4
1
32.9
32.5
32.3
31.9
0.9
0.5
0.3
ꢀ0.3
50-TCCAG_GCAAC-30
30-AGGTCACGTTG-50
50-TCCAG_GCAAC-30
30-AGGTCCCGTTG-50
50-TCCAG_GCAAC-30
30-AGGTCTCGTTG-50
50-TCCAGGCAAC-30
30-AGGTCCGTTG-50
32.2
33.6
31.1
45.3
1
1
1
33.5
30.8
44.9
ꢀ0.1
ꢀ0.3
ꢀ0.4
a Measurement of the melting temperature was conducted using bulged duplex DNA (4.77 lM, strand concentration) and compound (5.00 lM). The
absorbance at 260 nm was measured in sodium cacodylate buffer (10 mM, 7.0) containing NaCl (100 mM). Temperature was increased at a rate of
1 °C/min from 15 to 60 °C. Measurements were carried out at least three times.
3. (a) Wang, Y.-H.; Bortner, C. D.; Griffith, J. J. Biol. Chem.
1993, 268, 17571; (b) Malkov, V. A.; Biswas, I.; Camerini-
Otero, R. D.; Hsieh, P. J. Biol. Chem. 1997, 272, 23811.
4. (a) Nelson, J. W.; Tinoco, I., Jr. Biochemistry 1985, 24,
6416; (b) White, S. A.; Draper, D. E. Nucleic Acids Res.
1987, 15, 4049; (c) Woodson, S. A.; Crothers, D. M.
Biochemistry 1988, 27, 8904; (d) Williams, L. D.; Gold-
berg, I. H. Biochemistry 1988, 27, 3004; (e) Cortes, C. J.;
Wang, H.-J. Biochemistry 1996, 35, 616; (f) Nakatani, K.;
Okamoto, A.; Saito, I. Angew. Chem., Int. Ed. 1999, 38,
3378; (g) Xi, Z.; Hwang, G.-S.; Goldberg, I. H.; Harris, J.
L.; Pennington, W. T.; Fouad, F. S.; Qabaja, G.; Wright,
J. M.; Jones, G. B. Chem. Biol. 2002, 9, 925; (h) Colgrave,
M. L.; Williams, H. E. L.; Searle, M. S. Angew. Chem., Int.
Ed. 2002, 41, 4754.
5. (a) Nakatani, K.; Sando, S.; Saito, I. J. Am. Chem. Soc.
2000, 122, 2172; (b) Nakatani, K.; Horie, S.; Murase, T.;
Hagihara, S.; Saito, I. Bioorg. Med. Chem. 2003, 11, 2347;
(c) Nakatani, K.; Horie, S.; Saito, I. J. Am. Chem. Soc.
2003, 125, 8972.
6. (a) Toshima, K.; Ouchi, H.; Okazaki, Y.; Kano, T.;
Moriguchi, M.; Asai, A.; Matusumura, S. Angew. Chem.,
Int. Ed. 1997, 36, 2748; (b) Toshima, K.; Takano, R.;
Maeda, Y.; Suzuki, M.; Asai, A.; Matsumura, S. Angew.
Chem., Int. Ed. 1999, 38, 3733; (c) Toshima, K.; Maeda,
Y.; Ouchi, H.; Asai, A.; Matsumura, S. Bioorg. Med.
Chem. Lett. 2000, 10, 2163; (d) Toshima, K.; Okuno, Y.;
Nakajima, Y.; Matsumura, S. Bioorg. Med. Chem. Lett.
2002, 12, 671; (e) Toshima, K.; Takano, R.; Ozawa, T.;
Matsumura, S. Chem. Commun. 2002, 212.
when interacting with the duplex DNA and assist in the
selective interaction between the cytosine and the com-
plementary bulged DNA base, guanine.12 In addition,
the length between the cytosine and the deoxyamino su-
gar was also found to be very important for inducing
such an effect. The longer linker leading to the more flex-
ible structure of 2 probably lost the suitable fitting form
between 2 and the bulged DNA.
In summary, we demonstrated here, for the first time
that the cytosine–carbohydrate hybrid 1 produced a sta-
ble complex with a G bulged duplex DNA. Although the
DTm value of the G bulged DNA duplex in the presence
of hybrid 1 was not very high, the stabilization phenom-
enon was clearly detectable. The deoxyamino sugar was
essential and the distance from the cytosine was impor-
tant for the selective construction of such a thermody-
namically stable complex. This new strategy using a
hybrid molecule constructed from a nucleotide base
and a nonspecific binder, such as a carbohydrate, will
find wide application for the selective recognition of
other single nucleotide bulged duplex DNAs. To further
improve the ability of hybrid 1, the replacement of the
amino sugar in hybrid 1 with other types of amino sug-
ars and the attachment of oligosaccharides to cytosine
are now under investigation in our laboratories.
7. Toshima, K.; Matsuo, G.; Tatsuta, K. Tetrahedron Lett.
1992, 33, 2175.
Acknowledgments
8. Vorbruggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber.
1981, 114, 1256.
This research was partially supported by a Grant-in-Aid
for the 21st Century COE Program ÔKEIO Life Conju-
gate ChemistryÕ and a Grant-in-Aid for Scientific
Research (C) from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan.
9. The synthesis of 2 will be reported in detail elsewhere.
10. 1H NMR (300 MHz, CD3OD): (d, SiMe4; J Hz) data for 1
and 2. Compound 1: d 1.33 (3H, d, J = 6.0), 1.62 (1H, ddd,
J = 12.0, 12.0, and 10.0), 2.08 (1H, ddd, J = 12.0, 4.0, and
2.0), 2.37 (6H, s), 2.78 (1H, ddd, J = 12.0, 9.0, and 4.0),
3.21 (1H, dd, J = 9.8 and 9.8), 3.47 (1H, dq, J = 9.8 and
6.0), 5.72 (1H, dd, J = 10.0 and 2.0), 5.91 (1H, d, J = 8.0),
7.70 (1H, d, J = 8.0). Compound 2: d 1.29 (3H, d, J = 6.0),
1.66 (1H, ddd, J = 12.0, 12.0, and 9.0), 2.23 (1H, ddd,
J = 12.0, 4.0, and 2.0), 2.75–2.90 (1H, m), 2.79 (3H, s),
2.86 (3H, s), 3.20–3.40 (3H, m), 3.67 (1H, dq, J = 9.8 and
6.0), 3.82–3.95 (1H, m), 4.0–4.10 (1H, m), 4.65 (1H, dd,
J = 9.0 and 2.0), 6.01 (1H, d, J = 8.0), 7.85 (1H, d,
J = 8.0).
References and notes
1. Turner, D. Curr. Opin. Struct. Biol. 1992, 2, 334.
2. (a) Streisinger, G.; Owen, J. Genetics 1985, 109, 633; (b)
Woodson, S. A.; Crothers, D. M. Biochemistry 1987, 26,
904; (c) Woodson, S. A.; Crothers, D. M. Biochemistry
1988, 27, 436.