Communication
ChemComm
3 For reviews on NHC-catalysed oxidative transformations see: (a) C. E. I.
Knappke, A. Imami and A. Jacobi von Wangelin, ChemCatChem, 2012,
4, 937; (b) S. De Sarkar, A. Biswas, R. C. Samanta and A. Studer, Chem. –
Eur. J., 2013, 19, 4664.
4 Selected recent reviews on NHC catalysis: (a) M. H. Wang and
K. A. Scheidt, Angew. Chem., Int. Ed., 2016, 55, 14912; (b) D. M. Flanigan,
F. Romanov-Michailidis, N. A. White and T. Rovis, Chem. Rev., 2015,
115, 9307; (c) R. S. Menon, A. T. Biju and V. Nair, Chem. Soc. Rev., 2015,
44, 5040; (d) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius,
Nature, 2014, 510, 485; (e) J. Mahatthananchai and J. W. Bode, Acc. Chem.
Res., 2014, 47, 696; ( f) A. Grossmann and D. Enders, Angew. Chem., Int.
Ed., 2012, 51, 314; (g) X. Bugaut and F. Glorius, Chem. Soc. Rev., 2012,
41, 3511; (h) S. R. Yetra, A. Patra and A. T. Biju, Synthesis, 2015, 1357;
(i) H. U. Vora and T. Rovis, Aldrichimica Acta, 2011, 44, 3.
Scheme 5 Substrate scope: amine component.
5 H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007, 129, 13796.
6 J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 2007, 129, 13798.
7 For
a modification using CO2 to supress imine formation see:
R. W. M. Davidson and M. J. Fuchter, Chem. Commun., 2016, 52, 11638.
8 For a related report involving the generation of the a-substituted
aldehyde in situ see: S. Kuwano, S. Harada, R. Oriez and K.-I. Yamada,
Chem. Commun., 2012, 48, 145.
9 S. De Sarkar and A. Studer, Org. Lett., 2010, 12, 1992.
10 (a) S. De Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc., 2010,
Scheme 6 Synthesis of moclobemide.
¨
132, 1190; (b) R. C. Samanta, S. De Sarkar, R. Frohlich, S. Grimme
and A. Studer, Chem. Sci., 2013, 4, 2177; (c) D. L. Cramer, S. Bera and
A. Studer, Chem. – Eur. J., 2016, 22, 7403.
11 R. A. Green, D. Pletcher, S. G. Leach and R. C. D. Brown, Org. Lett.,
2016, 18, 1198.
12 S. Premaletha, A. Ghosh, S. Joseph, S. R. Yetra and A. T. Biju, Chem.
Commun., 2017, 53, 1478.
13 A. Alanthadka and C. U. Maheswari, Adv. Synth. Catal., 2015, 357, 1199.
14 For related oxidative amidations involving sulfoximines using 8 as
the oxidant see: (a) S. Dong, M. Frings, H. Cheng, J. Wen, D. Zhang,
G. Raabe and C. Bolm, J. Am. Chem. Soc., 2016, 138, 2166;
(b) A. Porey, S. Santra and J. Guin, Asian J. Org. Chem., 2016, 5, 870.
15 E. G. Delany, C.-L. Fagan, S. Gundala, A. Mari, T. Broja, K. Zeitler
and S. J. Connon, Chem. Commun., 2013, 49, 6510.
16 E. G. Delany, C.-L. Fagan, S. Gundala, K. Zeitler and S. J. Connon,
Chem. Commun., 2013, 49, 6513.
17 We had previously shown that 1,2-diketones could be cleaved in the
presence of either water or alcohols under the influence of NHC
catalysis: S. Gundala, C.-L. Fagan, E. G. Delany and S. J. Connon,
Synlett, 2013, 1225.
oxidative amidation of p-chlorobenzaldehyde (78) with the
commercially available amine 79 in 92% yield (Scheme 6).
In conclusion, a new NHC-catalysed oxidative amidation of
aldehydes has been developed. The methodology is mechanistically
distinct (involving benzils as acylating agents) and unique among
such methodologies in that a large excess of neither the amine,
aldehyde nor catalyst are required. Phenazine proved superior to the
often used 8, and could be recycled and recovered efficiently after
the reaction by exposure to air. A carbene catalyst and a nucleophilic
co-catalyst operate synergistically to allow the smooth amidation of
a range of aromatic aldehydes with either primary or secondary
amines in good-excellent yields, and the utility of the technology was
demonstrated through the efficient synthesis of an anti-depression
drug. Efforts to further explore the scope and mechanism of
this reaction are underway.
18 Because 23 is formed from the amidation of 25 in equimolar amounts,
reversion of 23 to 21 and 22 ensures that 24 is also a product from the
amidation of 25. Hypothetically speaking, if 25 were amidated smoothly
it would account for 50% yield, but if the 24 formed is only amidated at
26% levels, the theoretical yield is (50 Â 1.0) + (50 Â 0.26) = 63%, a value
very close to the 66% obtained.
We are grateful to Science Foundation Ireland the Solid State
Pharmaceutical Centre (12/RC/2275) for financial support.
19 Rigorous drying of all reagents/solvents (even the air) utilised failed
to suppress the formation of 32 in amidation reactions involving
pyrrolidine, indicating that it does not derive from a hydrolytic
process. We also exposed 31 to amidation conditions: 29 does not
emanate from 31.
Conflicts of interest
There are no conflicts to declare.
20 (a) C. Noonan, L. Baragwanath and S. J. Connon, Tetrahedron Lett.,
2008, 49, 4003; (b) C. A. Rose and K. Zeitler, Org. Lett., 2010, 12,
4552.
References
1 (a) A. Greenberg, C. M. Breneman and J. F. Liebman, The Amide Linkage, 21 Phenazine is just sufficiently soluble in THF at 0.4 M but not at
Structural Significance in Chemistry, Biochemistry and Materials Science, higher concentrations.
Wiley Interscience, New York, 2002; (b) N. Sewald and H. D. Jakube, 22 R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R. M. Waymouth and
Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, 2002. J. L. Hedrick, J. Am. Chem. Soc., 2006, 128, 4556.
2 For selected recent reviews on non-classical methods for amide 23 X. Yang and V. B. Birman, Org. Lett., 2009, 11, 1499.
bond formation see: (a) R. M. de Figueiredo, J.-S. Suppo and 24 (a) L. Baragwanath, C. A. Rose, K. Zeitler and S. J. Connon, J. Org.
J.-M. Campagne, Chem. Rev., 2016, 116, 12029; (b) V. R. Pattabiraman
and J. W. Bode, Nature, 2011, 480, 471.
Chem., 2009, 74, 9214; (b) S. E. O’Toole and S. J. Connon, Org.
Biomol. Chem., 2009, 7, 3584.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017