Favorsky rearrangement of alkyl benzyl ketones
Russ.Chem.Bull., Int.Ed., Vol. 52, No. 1, January, 2003
231
1H NMR, δ: 2.68 (t, 2 H, CH2, J = 7 Hz); 2.98 (t, 2 H, CH2,
J = 7 Hz); 3.70 (s, 3 H, OMe); 7.31 (m, 4 H, Ar).
Thus, the process similar to the Favorsky rearrangeꢀ
ment was carried out in an undivided electrolyzer during
the electrolysis of methanolic solutions of alkyl benzyl
ketones 1a—e in the presence of the mediator.
This process is a convenient and economic method
for the direct transformation of alkyl benzyl ketones into
the corresponding esters of arylalkanoic acids in the presꢀ
ence of the NaI—NaOH mediator system. The process
uses standard and readily available reagents, inexpensive
equipment, and an undivided electrolyzer. The proceꢀ
dures of electrolysis and isolation of final compounds are
simple and convenient to use in both laboratory setups
and larger (pilot or industrial) installations.
2,2ꢀDimethoxyꢀ1ꢀphenylpropanꢀ1ꢀol (3) was isolated by crysꢀ
tallization from the reaction mixture (see Table 1, entry 1,
ether—hexane, 1 : 1) in 21% yield, m.p. 59—61 °C (cf. Ref. 25:
m.p. 63—65 °C). 1H NMR, δ: 1.05 (s, 3 H, Me); 2.73 (s, 1 H,
ОН); 3.24 (s, 3 H, OMe); 3.33 (s, 3 H, OMe); 4.80 (s, 1 Н, CH);
7.10—7.55 (m, 5 H, Ar).
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 00ꢀ03ꢀ
32913a) and the Foundation for Leading Scientific
Schools (Project No. 00ꢀ15ꢀ97328).
References
Experimental
1. S. K. Chakrabartty, in Oxidation in Organic Chemistry, Part
C, Ed. W. S. Trahanovsky, Acad. Press, New York, 1978, 343.
2. R. T. Arnold, R. Buckles, and J. Stoltenberg, J. Am. Chem.
Soc., 1944, 66, 208.
3. R. Levine and J. R. Stephens, Am. Chem. Soc., 1950, 72, 1642.
4. R. C. Fuson and B. A. Bull, Chem. Rev., 1934, 15, 275.
5. J. Grimshow, Electrochemical Reactions and Mechanisms in
Organic Chemistry, Elsevier, Amsterdam, 2000.
6. Organic Electrochemistry, Ed. H. Lund (4th ed.), Marcel
Dekker, Inc., New York, 2000.
1
Н NMR spectra were recorded on Bruker WMꢀ250 and
Bruker AMꢀ300 instruments with working frequencies of 250
and 300 MHz, respectively, in CDCl3. Chemical shifts in the
NMR spectra were presented in the δ scale relatively to Me4Si.
GLC analysis was carried out on an LKhMꢀ80 chromatoꢀ
graph with a flameꢀionization detector using nitrogen as carrier
gas with a rate of 30 mL min–1 (column (glass) 2500×3 mm with
5% SEꢀSuperphase on Super Inerton (0.16—0.20 mm)) to moniꢀ
tor the conversion of initial ketones 1a—e.
7. W. E. Bradt and N. J. Opp, Trans. Electrochem. Soc., 1931,
59, 237.
The initial ketones were commercial reagents (Reakhim and
Aldrich). 4ꢀChlorophenylacetone was synthesized using a known
procedure.21
8. M. Yokoyama, Bull. Chem. Soc. Jpn., 1933, 8, 71.
9. F. Pirrone, Gazz. Chim. Ital., 1936, 66, 244.
10. J. W. Shipley and M. T. Rogers, Can. J. Res., 1939, 17B, 147.
11. J. Y. Becker, L. R. Byrd, L. L. Miller, and Y.ꢀH. So, J. Am.
Chem. Soc., 1975, 97, 853.
12. C. B. Campbell and D. Pletcher, Electrochim. Acta, 1978,
23, 953.
13. C. Rappe, in The Chemistry of the CarbonꢀHalogen Bond,
Part 2, Ed. S. Patai, Wiley, New York, 1973, 1071.
14. G. I. Nikishin, M. N. Elinson, and I. V. Makhova, Angew.
Chem., 1988, 100, 1716.
15. M. N. Elinson, I. V. Makhova, and G. I. Nikishin, Tetraꢀ
hedron, 1991, 47, 895.
16. T. Shono, Y. Matsumura, K. Inoe, and F. Iwasaki, J. Chem.
Soc., Perkin Trans. 1, 1986, 73.
17. F. Barba, M. N. Elinson, J. Escudero, and S. K. Feducovich,
Tetrahedron, 1997, 53, 4427.
18. M. N. Elinson, S. K. Feducovich, A. S. Dorofeev, A. N.
Vereshchagin, and G. I. Nikishin, Tetrahedron, 2000,
56, 9999.
19. R. H. De Wolfe and W. G. Young, Chem. Rev., 1956, 56, 753.
20. C. Rappe, Arkiv. Kemi, 1965, 24, 73.
21. E. G. Cragoe, A. M. Pietruszkiewicz, and C. M. Robb,
J. Org. Chem., 1958, 23, 971; 978.
22. S. A. Lebedev, V. S. Lopatina, S. S. Berestova, E. S. Petrov,
and I. P. Beletskaya, Zh. Org. Khim., 1986, 22, 1374 [J. Organ.
Chem. USSR, 1986, 22 (Engl. Transl.)].
23. H. I. Tashtoush and R. Sustmann, Chem. Ber., 1993,
126, 1759.
Electrolysis (general procedure). A solution of ketone
(15 mmol), mediator (10 mmol), and alkali (2 mmol) in MeOH
(20 mL) was electrolyzed in an undivided cell equipped with a C
anode and a Fe cathode (surface area of the electrodes was
5 cm2) at 30 °C and a constant current density of 100 mA cm–2
passing a specified amount of electricity through the solution
(see Table 1). The reaction mixture was neutralized with dilute
HCl, and the solvent was evaporated. The mixture was extracted
with Et2O. The extract was washed with an aqueous solution of
Na2S2O3 and water and dried over Na2SO4. The ether was disꢀ
tilled off, and the residue was analyzed by 1H NMR spectrosꢀ
copy. Esters 2а—е were isolated by distillation.
Methyl 3ꢀphenylpropionate (2a), 79% yield, b.p. 122—124 °C
(14 Torr) (cf. Ref. 22: b.p. 68—70 °C (2 Torr)). 1H NMR, δ:
2.67 (t, 2 H, CH2, J = 7 Hz); 2.99 (t, 2 H, CH2, J = 7 Hz); 3.70
(s, 3 H, OMe); 7.28 (m, 5 H, C6H5).
Methyl 2ꢀmethylꢀ3ꢀphenylpropionate (2b), 78% yield, b.p.
59—60 °C (0.7 Torr) (cf. Ref. 23: b.p. 90—93 °C (1 Torr)).
1H NMR, δ: 1.15 (d, 3 H, Me, J = 7 Hz); 2.66 (m, 2 H, CH2);
2.99 (m, 1 H, CH); 3.63 (s, 3 H, OMe); 7.28 (m, 5 H, Ar).
Methyl 3ꢀphenylbutanoate (2c), 76% yield, b.p. 130—132 °C
(45 Torr) (cf. Ref. 24: b.p. 74—78 °C (0.5 Torr)). 1H NMR, δ:
1.32 (d, 3 H, Me, J = 7 Hz); 2.62 (m, 2 H, CH2); 3.31 (m, 1 H,
CH); 3.67 (s, 3H, OMe); 7.28 (m, 5 H, C6H5).
Methyl 3ꢀ(4ꢀmethoxyphenyl)propionate (2d), 71% yield, b.p.
148—150 °C (14 Torr), m.p. 36—37 °C (petroleum ether) (cf.
Ref. 22: b.p. 35—36 °C). 1H NMR, δ: 2.66 (t, 2 H, CH2,
J = 7 Hz); 2.93 (t, 2 H, CH2, J = 7 Hz); 3.68 (s, 3 H, OMe); 3.81
(s, 3 H, OMe); 7.02 (d, 2 H, Ar, J = 8 Hz); 7.14 (d, 2 H, Ar,
J = 8 Hz).
24. H. O. House and M. J. Umen, J. Org. Chem., 1973, 38, 3893.
25. W. D. McPhee and E. Klingsberg, J. Am. Chem. Soc., 1944,
66, 1132.
Methyl 3ꢀ(4ꢀchlorophenyl)propionate (2e), 72% yield, b.p.
136—138 °C (14 Torr) (cf. Ref. 22: b.p. 85—86 °C (2 Torr)).
Received May 23, 2002