LETTER
Transesterification Reaction Using K2HPO4 for the Synthesis of Methyl Esters
2145
E. M.; Shchepinov, M. S. Chem. Commun. 2005, 3466.
(m) Paek, S.-M.; Seo, S.-Y.; Kim, S.-H.; Jung, J.-W.; Lee,
Y.-S.; Jung, J.-K.; Suh, Y.-G. Org. Lett. 2005, 7, 3159.
(n) Hansen, D. B.; Wan, X.; Carroll, P. J.; Joullie, M. M.
J. Org. Chem. 2005, 70, 3120. (o) Kai, T.; Sun, X.-L.;
Faucher, K. M.; Apkarian, R. P.; Chaikof, E. L. J. Org.
Chem. 2005, 70, 2606. (p) Ichige, T.; Kamimura, S.;
Mayumi, K.; Sakamoto, Y.; Terashita, S.; Ohteki, E.;
Kanoh, N.; Nakata, M. Tetrahedron Lett. 2005, 46, 1263.
(q) Giner, J. Org. Lett. 2005, 7, 499.
Acknowledgment
This work was supported by the Japan Society for the Promotion of
Science (JSPS), and the Grants-in-Aid for Scientific Research (Nos.
19201045 and 21310145).
References and Notes
(1) For reviews, see: (a) Chenevert, R.; Pelchat, N.; Jacques, F.
Curr. Org. Chem. 2006, 10, 1067. (b) Grasa, G. A.; Singh,
R.; Nolan, S. P. Synthesis 2004, 971. (c) Hoydonckx, H. E.;
De Vos, D. E.; Chavan, S. A.; Jacobs, P. A. Top. Catal.
2004, 27, 83. (d) Otera, J. In Esterification; Wiley-VCH:
Weinheim, 2003. (e) Larock, R. In Comprehensive Organic
Transformations, 2nd ed.; Wiley: New York, 1996.
(f) Otera, J. Chem. Rev. 1993, 93, 1449. (g) Mulzer, J. In
Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: New York, 1992.
(2) For recent progress on the catalytic transesterification, see:
(a) Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.;
Mashima, K. J. Org. Chem. 2008, 73, 5147. (b) Ishihara,
K.; Niwa, M.; Kosugi, Y. Org. Lett. 2008, 10, 2187.
(c) Kondaiah, G. C. M.; Reddy, L. A.; Babu, K. S.; Gurav,
V. M.; Huge, K. G.; Bandichhor, R.; Reddy, P. P.;
Bhattacharya, A.; Anand, R. V. Tetrahedron Lett. 2008, 49,
106. (d) Inahashi, N.; Fujiwara, T.; Sato, T. Synlett 2008,
605. (e) Ohshima, T.; Iwasaki, T.; Maegawa, Y.;
(8) Typical Synthetic Procedure: To a solution of the N-Cbz-
threonine ethyl ester (7; 1 mmol) in MeOH (10 mL) was
added K2HPO4 (0.1 equiv). The mixture was heated at reflux
for 1 h and concentrated under reduced pressure. The crude
material was then dissolved in EtOAc–hexane (1:1, 10 mL).
The mixture was filtered through a thin silica gel pad. The
filtrate was concentrated under reduced pressure to give the
N-Cbz-threonine methyl ester(8) in 92% yield.
(9) (a) Transesterification of the Ortho Ester 38 to 40: In a
similar manner to the reported method,6 38 was synthesized
from Fmoc-Gly-OH in 45% yield (two steps). Analytical
data of 38: IR (ATR): 3347, 3066, 2944, 2881, 1722, 1525,
1450, 1402, 1245, 1049, 1004, 910 cm–1. 1H NMR (400
MHz, CDCl3): d = 7.75 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3
Hz, 2 H), 7.38 (t, J = 7.3 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H),
5.09 (br s, 1 H), 4.38 (d, J = 6.9 Hz, 2 H), 4.23 (t, J = 6.9, 2
H), 3.92 (s, 6 H), 3.43 (br d, J = 6.0 Hz, 2 H), 0.82 (s, 3 H).
HRMS (FAB): m/z [M + H]+ calcd for C22H24NO5:
382.1655; found: 382.1654. (b) A mixture of 38 (130 mg,
0.33 mmol) in AcOH–THF–H2O (5:1:1, 0.7 mL) was stirred
for 12 h and concentrated under reduced pressure. The
remaining AcOH and H2O were removed as an azeotropic
mixture of toluene. The crude 39 was subjected to the next
step without purification. Analytical data of 39: 1H NMR
(400 MHz, CDCl3): d = 7.76 (d, J = 7.3 Hz, 2 H), 7.60 (d,
J = 7.3 Hz, 2 H), 7.40 (t, J = 7.3 Hz, 2 H), 7.39 (t, J = 7.3 Hz,
2 H), 5.45 (br s, 1 H), 4.41 (d, J = 7.1 Hz, 2 H), 4.21–4.25
(m, 3 H), 4.01 (br s, 1 H), 3.55 (br s, 4 H), 0.85 (s, 3 H).
(c) To a solution of 39 in MeOH (3.5 mL) was added
K2HPO4 (0.11 mmol). The mixture was heated to reflux for
1 h and concentrated under reduced pressure. The crude
mixture was diluted with EtOAc–hexane (1:1, 10 mL) and
filtered through a thin silica gel pad. The filtrate was
concentrated under reduced pressure to give 40 in 94% yield.
The analytical data were identical to the authentic data.10
(10) Mineno, T.; Kansui, H. Chem. Pharm. Bull. 2006, 54, 918.
(11) The role of K2HPO4 in the mild transesterification reaction
has been unclear. In our experiments using various inorganic
salts, the reaction rate and product yield were varied and not
necessarily dependent on the cationic or anionic nature of
inorganic salts.
Yoshiyama, A.; Mashima, K. J. Am. Chem. Soc. 2008, 130,
2944. (f) Remme, N.; Koschek, K.; Schneider, C. Synlett
2007, 491. (g) Jiang, P.; Zhang, D.; Li, Q.; Lu, Y. Catal.
Lett. 2006, 110, 101. (h) de Sairre, M. I.; Bronze-Uhle,
E. S.; Donate, P. M. Tetrahedron Lett. 2005, 46, 2705.
(i) Singh, R.; Kissling, R. M.; Letellier, M.-A.; Nolan, S. P.
J. Org. Chem. 2004, 69, 209.
(3) Hamada, M.; Shinada, T.; Ohfune, Y. Org. Lett. 2009, 11,
4664.
(4) Green, T. W.; Wuts, P. G. In Protecting Groups in Organic
Synthesis, 4th ed.; John Wiley & Sons, Inc.: New York,
2007.
(5) Corey, E. J.; Raju, N. Tetrahedron Lett. 1983, 24, 5571.
(6) Rose, N. G. W.; Blaskovich, M. A.; Evindar, G.; Wilkinson,
S.; Luo, Y.; Fishlock, D.; Reid, C.; Lajoie, G. A. Org. Synth.,
Coll. Vol. X; Wiley: New York, 2004, 73.
(7) For recent examples, see: (a) Winkler, J. D.; Fitzgerald,
M. E. Synlett 2009, 562. (b) Jahn, U.; Dinca, E. Chem. Eur.
J. 2009, 15, 58. (c) Zhdanko, A. G.; Nenajdenko, V. G.
J. Org. Chem. 2009, 74, 884. (d) Ichige, T.; Okano, Y.;
Kanoh, N.; Nakata, M. J. Org. Chem. 2009, 74, 230.
(e) Tange, S.; Fukuhara, T.; Hara, S. Synthesis 2008, 3219.
(f) Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R.
J. Am. Chem. Soc. 2008, 130, 11486. (g) Nicolaou, K. C.;
Dethe, D. H.; Leung, G. Y. C.; Zou, B.; Chen, D. Y.-K.
Chem. Asian J. 2008, 3, 413. (h) Martynow, J. G.; Jozwik,
J.; Szelejewski, W.; Achmatowicz, O.; Kutner, A.;
Wisniewski, K.; Winiarski, J.; Zegrocka-Stendel, O.;
Golebiewski, P. Eur. J. Org. Chem. 2007, 689. (i) Bowen,
M. E.; Monguchi, Y.; Sankaranarayanan, R.; Vagner, J.;
Begay, L. J.; Xu, L.; Jagadish, B.; Hruby, V. J.; Gillies,
R. J.; Mash, E. A. J. Org. Chem. 2007, 72, 1675.
(12) The transesterification reaction of methyl esters to other
esters using K2CO3 has been reported, see: Barry, J.; Bram,
G.; Petit, A. Tetrahedron Lett. 1988, 29, 4567.
(13) Catalytic activity and selectivity of various inorganic salts
except for K2HPO4 have been evaluated for the
transesterification reactions of sunflower oil to produce
long-chain fatty acid methyl esters (biodiesel), see:
Arzamendi, G.; Arguinarena, E.; Campo, I.; Zabala, S.;
Gandia, L. M. Catal. Today 2008, 133-135, 305.
(j) Raghavan, B.; Johnson, R. L. J. Org. Chem. 2006, 71,
2151. (k) Snider, B. B.; Gao, X. Org. Lett. 2005, 7, 4419.
(l) Bernad, P. L. Jr.; Khan, S.; Korshun, V. A.; Southern,
Synlett 2010, No. 14, 2141–2145 © Thieme Stuttgart · New York