160
G.M. Neelgund, A. Oki / Applied Catalysis A: General 399 (2011) 154–160
Table 2
Acknowledgements
Heck reaction between aryl halide and n-butyl acrylate catalyzed by f-CNTs-Pd
nanocatalyst.
The authors acknowledge the support from NIH-NIGMS grant
#1SC3GM086245, NIH-NIGMS RISE grant #1R25GM078361 and
the Welch foundation.
Aryl halide n-Butyl acrylate
Product
Time (h) Yield (%)
O
O
O
O
O
O
I
CH3
O
O
O
O
O
O
O
Appendix A. Supplementary data
CH3
O
O
O
O
O
O
7.5
8
64.2
61.5
52.7
65.8
63.7
54.6
Supplementary data associated with this article can be found, in
Br
Cl
I
CH3
O
O
O
O
O
CH3
References
[1] S. Iijima, Nature 354 (1991) 56–58.
[2] P.M. Ajayan, Chem. Rev. 99 (1999) 1787–1799.
[3] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787–792.
[4] Y. Saito, S. Uemura, Carbon 38 (2000) 169–182.
[5] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. Mcintyre, P. Mceuen, M.
Lundstrom, H. Dai, Nat. Mater. 1 (2002) 241–246.
[6] S. Wang, E. Humphreys, S. Chung, D. Delduco, S. Lustig, H. Wang, K. Parker, N.
Rizzo, S. Subramoney, Y. Chiang, A. Jagota, Nat. Mater. 2 (2003) 196–200.
[7] G. Dieckmann, A. Dalton, P. Johnson, J. Razal, J. Chen, G. Giordano, E. Munoz,
I. Musselman, R. Baughman, R. Draper, J. Am. Chem. Soc. 125 (2003) 1770–
1777.
[8] G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Science 302 (2003)
1545–1548.
[9] Y. Wang, X. Wang, B. Wu, Z. Zhao, F. Yin, S. Li, X. Qin, Q. Chen, Sens. Actuators
B 130 (2008) 809–815.
CH3
CH3
12
C2H5
C2H5
C2H5
C2H5
C2H5
C2H5
6
7
Br
Cl
[10] H. Zhao, H. Ju, Anal. Biochem. 350 (2006) 138–144.
[11] E. Miyako, H. Nagata, K. Hirano, Y. Makita, K. Nakayama, T. Hirotsu, Nanotech-
nology 18 (2007) 475103–475109.
[12] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz,
K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E.
Smalley, Science 297 (2002) 593–596.
11
[13] S.M. Chergui, A. Ledebt, F. Mammeri, F. Herbst, B. Carbonnier, H.B. Romdhane,
M. Delamar, M.M. Chehimi, Langmuir 26 (2010) 16115–16121.
[14] S. Song, H. Yang, R. Rao, H. Liu, A. Zhang, Appl. Catal. A 375 (2010) 265–
271.
4. Conclusions
[15] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005)
1025–1102.
[16] R.B. Bedford, Chem. Commun. (2003) 1787–1796.
[17] R. Amengual, E. Genin, V. Michelet, Adv. Synth. Catal. 344 (2002) 393–398.
The acyl groups were successfully introduced on the surface of
CNTs by treating them with a mixture of HNO3/H2SO4 and sub-
sequently with SOCl2. The COCl groups generated on the surface
of CNTs were consequently utilized for grafting of PLA chains. The
retention of PLA on the surface of CNTs after extensive washings
with CH2Cl2 was evidenced by FTIR, TGA and TEM, which reveals
that PLA chains are covalently grafted onto CNTs and a strong inter-
action exists between them. The f-CNTs were effectively employed
as substrate for in situ generation of Pd nanoparticles. The depo-
sition of Pd nanoparticles on f-CNTs was confirmatively studied
by XRD and TEM. The coupling between arylhalides and n-butyl
acrylates using f-CNTs-Pd as a catalyst was successfully accom-
plished through well know Heck reaction. The activity of f-CNTs-Pd
nanocatalyst was significantly influenced by the presence of CNTs.
Moreover, the novel nanocatalyst, f-CNTs-Pd is stable, easily recov-
erable and maintains its high activity over a number of cycles. The
further efforts to extend application of this system in other reac-
tions are currently progress in our laboratory.
[18] G.X. Chen, H.S. Kim, B.H. Park, J.S. Yoon, J. Phys. Chem.
22237–22243.
B 109 (2005)
[19] G.X. Chen, H.S. Kim, E.S. Kim, J.S. Yoon, Eur. Polym. J. 42 (2006) 468–472.
[20] G.M. Neelgund, A. Oki, J. Nanosci. Nanotechnol. 11 (2011) 3621–3629.
[21] B. Yoon, H. Kim, C.M. Wai, Chem. Commun. (2003) 1040–1041.
[22] Z. Li, J. Gao, X. Xing, S. Wu, S. Shuang, C. Dong, M.C. Paau, M.M.F. Choi, J. Phys.
Chem. C 114 (2010) 723–733.
[23] A.N. Chakoli, J. Wan, J.T. Feng, M. Amirian, J.H. Sui, W. Cai, Appl. Surf. Sci. 256
(2009) 170–177.
[24] Y.C. Jung, H. Muramatsu, T. Hayashi, J.H. Kim, Y.A. Kim, M. Endo, M.S. Dressel-
haus, Eur. J. Inorg. Chem. 2010 (2010) 4305–4308.
[25] J.T. Yoon, Y.G. Jeong, S.C. Lee, B.G. Min, Polym. Adv. Technol. 20 (2009) 631–
638.
[26] J.J. Park, D.M. Park, J.H. Youk, W.R. Yu, J. Lee, Carbon 48 (2010) 2899–2905.
[27] Y. Xiong, Y. Xia, Adv. Mater. 19 (2007) 3385–3391.
[28] O. Winjobi, Z. Zhang, C. Liang, W. Li, Electrochim. Acta 55 (2010) 4217–
4221.
[29] B. Olalde, J.M. Aizpurua, A. Garcia, I. Bustero, I. Obieta, M.J. Jurado, J. Phys. Chem.
C 112 (2008) 10663–10667.
[30] W. Song, Z. Zheng, W. Tang, X. Wang, Polymer 48 (2007) 3658–3663.