319
4. Alvisi, D.; Bonini, B. F.; Mazzanti, G.; Ricci, A.; Zani, P. J. Org. Chem. 1996, 61, 7139–7146.
5. Jeffery, T. Tetrahedron Lett. 1999, 40, 1673–1676.
6. Bozell, J. J.; Vogt, C. E. J. Am. Chem. Soc. 1988, 110, 2655–2657.
7. Beller, M.; Zapf, A. Synlett 1998, 792–793.
8. Jeffery, T.; Tetrahedron Lett. 1985, 26, 2667–2670.
9. Shezad, N.; Oakes, A. S.; Clifford, A. A.; Rayner, C. M. Tetrahedron Lett. 1999, 40, 2221–2224.
10. Bhanage, B. M.; Zhao, F.-G.; Shinai, M.; Arai, M. Tetrahedron Lett. 1998, 39, 9509–9512.
11. Choudhary, B. M.; Sarma, M. R. Tetrahedron Lett. 1990, 31, 1495–1496.
12. Varma, S. R.; Naicker, K. P.; Liesen, P. J. Tetrahedron Lett. 1999, 40, 2075–2078.
13. Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 43, 2941–2846.
14. Waterlot, C. PhD Thesis, Université de Lille, France, 1999.
15. Bei, X.; Guram, A. S.; Turner, H. W.; Weinberg, W. H. Tetrahedron Lett. 1999, 40, 1237–1240.
16. Guari, Y.; Van Es, D. S.; Reck, J. N. H.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. Tetrahedron Lett. 1999, 40, 3789–3790.
17. Larock, R. C. In Comprehensive Organic Transformations; VCH Publishers: New York, 1989; pp. 399–400.
18. Akiyama, F.; Miyazaki, H.; Kaneda, K.; Teranishi, S. J. Org. Chem. 1980, 45, 2359–2361.
19. Kikukawa, K.; Maemura, K.; Kiseki, Y.; Wada, F.; Matsuda, T. J. Org. Chem. 1981, 46, 4885–4888.
20. Darses, S.; Michaud, G.; Genêt, J.-P. Tetrahedron Lett. 1998, 39, 5045–5048.
21. Beller, M.; Fisher, H.; Kühlein, K. Tetrahedron Lett. 1994, 35, 8773–8776.
22. Kikukawa, K.; Matsuda, T. Chem. Lett. 1977, 159–162.
23. Choudhary, B. M.; Sarma, R. H.; Rao, K. K. Tetrahedron 1992, 48, 719–726.
24. Pd–Cu–Mont.K10 is a palladium and copper exchanged montmorillonite K10 clay. This catalyst was prepared by
exchanging the clay with dilute aqueous palladium chloride (Pd=0.29 wt% of Mont.K10 clay) and copper nitrate (Cu=0.36
wt% of Mont.K10 clay).25
25. Ramchandani, R. K.; Uphade, R. K.; Vinod, M. P.; Wakharkar, R. D.; Choudhary, V. R.; Sudalai, A. Chem. Comm. 1997,
2071–2072.
26. General procedure for the arylation of methyl acrylate (Table 1, entry 6): A solution of methyl acrylate (8.0 g, 93.5 mmol)
in dichloromethane (10 mL) was slowly added to a mixture of 2,5-dimethoxy-1-(40-aminobenzyl)benzene (11.3 g, 46.7
mmol), Pd–Cu–Mont.K10 clay (1.1 g) in acetic acid (50 mL) and dichloromethane (15 mL). The suspension was refluxed
with stirring until the starting material was completely consumed as judged by HPLC analysis. The catalyst was collected29
and the cooled reaction mixture was stirred with 100 mL of water. The aqueous layer was extracted with dichloromethane
(50 mL), and the organic phases were dried over CaCl2 and concentrated under vacuum. The brown solid was recrystallized
from petroleum ether/diethyl ether giving the monomer 2 (10.2 g, 70%) as a white solid, mp 83°C; IR (KBr): 2995, 2835,
1710, 1600, 1500, 1430, 1320, 1230, 1170, 1020 cm−1; 1H NMR (CDCl3): δ 3.72 (s, 3H), 3.76 (s, 3H), 3.79 (s, 3H), 3.95
(s, 2H), 6.38 (d, J=16.1 Hz, 1H), 6.66 (d, J=3.0 Hz, 1H), 6.72 (dd, J=8.8 Hz, J=3.0 Hz, 1H), 6.79 (d, J=8.8 Hz, 1H), 7.22 (d,
J=8.1 Hz, 2H), 7.42 (d, J=8.1 Hz, 2H), 7.66 (d, J=16.1 Hz, 1H); 13C NMR (CDCl3): δ 36.1, 51.7, 55.7, 56.0, 111.5, 116.9,
128.2, 128.4, 130.2, 132.1, 143.7, 144.9, 151.7, 153.6, 167.7; m/z 312 (M+, 100). Anal. calcd for C19H20O4: C, 73.06; H,
6.45. Found: C, 72.92; H, 6.29.
27. At the end of the reaction, only final product and a small amount of polymers are observed in the reaction mixture.
28. Accordingly, the preparation of the catalyst,23,25 only 0.0029 g of Pd were necessary to synthesize methyl cinnamates
starting from 100 g of substituted aryl amines.
29. The catalyst from the reaction mixture was recovered by simple filtration and was successfully reused once without losing its
activity in the vinylation of 2,5-dimethoxy-1-(40-aminobenzyl)benzene (Table 1, entry 6). Ramchandani reused this catalyst
three times in vinylation of aryl iodides.25
30. Waterlot, C.; Couturier, D.; Hasiak, B. J. Polym. Sci. 1999, submitted for publication.