DOI: 10.1039/C5OB00677E
Page 3 of 3
Journal Name
Organic & Biomolecular Chemistry
COMMUNICATION
a
National Research Center for Carbohydrate Synthesis, Jiangxi Normal
University, Nanchang 330022, Jiangxi P. R. China. E-mail:
drmenggao@163.com; aiwenlei@whu.edu.cn.
substrate ratio between benzylic alcohol and aliphatic alcohol is
10 to 1. Thus, the concentration of I-2ʹ should be higher than that
of I-2. The aryl aldehyde would selectively inserts to I-2ʹ to
generate intermediate I-3, which is a hemiacetal palladium
complex. Intermediate I-3 occurs β-hydride elimination to
furnish the final ester and a palladium hydride species I-4. The
reductive elimination of I-4 releases simple toluene and
regenerates Pd(0) species.
b College of Chemistry and Molecular Sciences, the Institute for Advanced
Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China.
† Electronic Supplementary Information (ESI) available: See DOI:
10.1039/c000000x/
1. (a) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780-
1824; (b) C. Liu, L. Jin and A. Lei, Synlett, 2010, 527-2536.
2. (a) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem. Int. Ed., 2014,
53, 74-100; (b) J. Le Bras and J. Muzart, Chem. Rev., 2011, 111, 1170-
1214; (c) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215-
1292; (d) A. N. Campbell and S. S. Stahl, Acc. Chem. Res., 2012, 45, 851-
863; (e) Y. Wu, J. Wang, F. Mao and F. Y. Kwong, Chem. Asian. J, 2014,
9, 26-47; (f) Zhang, Z.; Ouyang, L.; Wu, W.; Li, J.; Zhang, Z.; Jiang, H.
J. Org. Chem. 2014, 79, 10734-10742; (g) Zhang, Z.; Wu, W.; Liao, J.;
Li, J.; Jiang, H. Chem. Eur. J., 2015, 21, 6708-6712.
Table 3 Palladium-catalysed oxidative cross esterification between
benzylic alcohols with aliphatic alcohols.a
3. J. Otera and J. Nishikido, Esterification : methods, reactions, and
applications, 2nd completely rev. and enl. edn., Wiley-VCH, Weinheim,
2010.
4. (a) E. G. Delany, C.-L. Fagan, S. Gundala, K. Zeitler and S. J. Connon,
Chem. Commun., 2013, 49, 6513-6515; (b) A. M. Whittaker and V. M.
Dong, Angew. Chem. Int. Ed., 2015, 54, 1312-1315; (c) B. A. Tschaen, J.
R. Schmink and G. A. Molander, Org. Lett., 2013, 15, 500-503; (d) C.
Liu, S. Tang, L. Zheng, D. Liu, H. Zhang and A. Lei, Angew. Chem. Int.
Ed., 2012, 51, 5662-5666; (e) W.-J. Yoo and C.-J. Li, Tetrahedron Lett.,
2007, 48, 1033-1035; (f) T. Yasukawa, H. Miyamura and S. Kobayashi,
Chem. Asian. J, 2011, 6, 621-627; (g) X.-F. Wu and C. Darcel, Eur. J.
Org. Chem., 2009, 1144-1147; (h) X.-F. Wu, Tetrahedron Lett., 2012, 53,
3397-3399; (i) R. Gopinath and B. K. Patel, Org. Lett., 2000, 2, 577-579;
(j) B. E. Maki and K. A. Scheidt, Org. Lett., 2008, 10, 4331-4334; (k) S.
D. Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc., 2010, 132, 1190-
1191; (l) R. C. Samanta, S. De Sarkar, R. Frohlich, S. Grimme and A.
Studer, Chem. Sci., 2013, 4, 2177-2184.
a Reaction conditions: 1 (0.50 mmol), 2a (5.0 mmol), PdCl2(PPh3)2 (5.0 mol%),
K2CO3 (1.0 mmol), BnCl (1.0 mmol) in THF (2 mL) at 65 oC for 20 h. b Isolated
yield.
5. S. Tang, J. Yuan, C. Liu and A. Lei, Dalton. Trans., 2014, 43, 13460-
13470.
6. (a) N. A. Owston, A. J. Parker and J. M. J. Williams, Chem. Commun.,
2008, 624-625; (b) N. A. Owston, T. D. Nixon, A. J. Parker, M. K.
Whittlesey and J. M. J. Williams, Synthesis, 2009, 1578-1581; (c) S.
Gowrisankar, H. Neumann and M. Beller, Angew. Chem. Int. Ed., 2011,
50, 5139-5143; (d) C. Liu, J. Wang, L. Meng, Y. Deng, Y. Li and A. Lei,
Angew. Chem. Int. Ed., 2011, 50, 5144-5148; (e) D. Srimani, E.
Balaraman, B. Gnanaprakasam, Y. Ben-David and D. Milstein, Adv.
Synth. Catal., 2012, 354, 2403-2406; (f) N. Yamamoto, Y. Obora and Y.
Ishii, J. Org. Chem., 2011, 76, 2937-2941; (g) Y. Kita, Y. Nishii, A.
Onoue and K. Mashima, Adv. Synth. Catal., 2013, 355, 3391-3395; (h) A.
B. Powell and S. S. Stahl, Org. Lett., 2013, 15, 5072-5075; (i) R. V.
Jagadeesh, H. Junge, M.-M. Pohl, J. Radnik, A. Brückner and M. Beller,
J. Am. Chem. Soc., 2013, 135, 10776-10782; (j) R. Ray, R. D. Jana, M.
Bhadra, D. Maiti and G. K. Lahiri, Chem. Eur. J., 2014, 20, 15618-15624;
(k) X.-F. Wu, Chem. Eur. J., 2012, 18, 8912-8915.
7. B. Liu, F. Hu and B.-F. Shi, ACS Catal., 2015, 1863-1881.
8. (a) M. S. Sigman and D. R. Jensen, Acc. Chem. Res., 2006, 39, 221-229;
(b) R. A. Sheldon, I. W. C. E. Arends, G.-J. ten Brink and A. Dijksman,
Acc. Chem. Res., 2002, 35, 774-781.
Scheme 2 Proposed mechanism
9. (a) M. Zhang, S. Zhang, G. Zhang, F. Chen and J. Cheng, Tetrahedron
Lett., 2011, 52, 2480-2483; (b) D. Zhang and C. Pan, Catal. Commun.,
2012, 20, 41-45; (c) F. Luo, C. Pan, J. Cheng and F. Chen, Tetrahedron,
2011, 67, 5878-5882.
In conclusion, we have achieved the oxidative cross-
esterification between benzylic alcohol and aliphatic alcohols by
using PdCl2(PPh3)2 as the sole catalyst and benzyl chloride as the
oxidant. Various benzylic alcohols can selectively couple with
methanol in excellent yields. This reaction system is also suitable
for the oxidative cross-esterification with other aliphatic alcohols.
According to the proposed mechanism, the oxidant benzyl
chloride and the use of excess amount of aliphatic alcohol is
important for the selectivity of this reaction.
10. C. Liu, S. Tang and A. Lei, Chem. Commun., 2013, 49, 1324-1326.
This work was financially supported by the National Natural
Science Foundation of China (Nos. 21262018 and 20862007)
and the Natural Science Foundation of Jiangxi Province
(2010GZH0070).
Notes and references
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3