Catalysis Science & Technology
COMMUNICATIONꢀ
JournalꢀNameꢀ
DOI: 10.1039/C5CY00655D
9
-1 -1
•
Low concentrations and modest reactivity for any other free
radical termination is typically around 2 x 10 M s , gives an
average radical concentration about 30 nM.
9. A. Corma and P. Serna, Science 2006, 313, 332; D. Combita, P.
Concepción and A. Corma, J. Cat., 2014, 311, 339.
0. J.-M. Kern and J.-P. Sauvage, J. Chem. Soc., Chem. Commun., 1987,
radical traps, and likely the reason why DIPEA gives better yield
than the more reactive TEA.
•
1
2
Absence of efficient radical traps. Note that addition of TEMPO
effectively inhibits the reaction.
5
46.
•
Absence of oxygen, as most carbon centered radicals (but not 21. H. Ismaili, S. P. Pitre and J. C. Scaiano, Cat. Sci. Tech., 2013, 3, 935.
4
38 37
all) react rapidly with oxygen.
.
22. Y. Miyake, K. Nakajima and Y. Nishibayashi, J. Am. Chem. Soc.,
012, 134, 3338.
2
3. J. C. Scaiano, J. Phys. Chem., 1981, 85, 2851.
It is interesting that these unusual criteria are all met in the current
system making radical-radical reactions the preferred process.
Finally, the catalyst showed an acceptable stability and reusability.
2
2
4. D. D. M. Wayner, J. J. Dannenberg and D. Griller, Chem. Phys. Lett.,
1
986, 13, 189.
2
2
5. U. Hartfelder, C. Kartusch, M. Makosch, M. Rovezzi, J. Sa and J. A.
van Bokhoven, Catal. Sci. Tech., 2013, 3, 454; V. Subramanian, E. E.
Wolf and P. V. Kamat, J. Am .Chem. Soc., 2004, 126, 4943; T.
Kiyonaga, M. Fujii, T. Akita, H. Kobayashi and H. Tada, PCCP,
2008, 10, 6553.
6. Y. Tian and T. Tatsuma, J. Am .Chem. Soc., 2005, 127, 7632; A.
Aiboushev, F. Gostev, I. Shelaev, A. Kostrov, A. Kanaev, L. Museur,
M. Traore, O. Sarkisov and V. Nadtochenko, Photochem. Photobiol.
Sci., 2013, 12, 631; C. Gomes Silva, R. Juárez, T. Marino, R.
Molinari and H. Garcia, J. Am .Chem. Soc., 2011, 133, 595.
7. L. Álvarez-Griera, I. Gallardo and G. Guirado, Electrochim. Acta,
Acknowledgement
We thank the Natural Sciences and Engineering Research Council of Canada,
the Canada Research Chairs program and the Canadian Foundation for
Innovation for generous support.
Notes and references
Department of Chemistry and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5,
Canada.
2
2
2
3
3
3
3
3
3
3
3
*
E-mail: scaiano@photo.chem.uottawa.ca
2
009, 54, 5098.
8. J. Chateauneuf, J. Lusztyk and K. U. Ingold, J. Org. Chem., 1988, 53,
629.
Electronic Supplementary Information (ESI) available: Experimental
details, instrumentation used and NMR spectrum are shown in the supplementary
information. See DOI: 10.1039/c000000x/
1
9. W. G. Skene, J. C. Scaiano, N. A. Listigovers, P. M. Kazmaier and
M. K. Georges, Macromolecules, 2000, 33, 5065.
0. T. J. Connolly, M. V. Baldoví, N. Mohtat and J. C. Scaiano,
Tetrahedron Lett., 1996, 37, 4919.
1. J. Sobek, R. Martschke and H. Fischer, J. Am. Chem. Soc., 2001,
1
2
.
.
B. D. Briggs, R. T. Pekarek and M. R. Knecht, J. Phys Chem. C,
014, 118, 18543.
A. J. J. Lennox and G. C. Lloyd-Jones, Angew. Chem. Int. Ed. Engl.,
013, 52, 7362.
2
2
1
23, 2849.
3
4
.
.
H. Fischer, J. Am. Chem. Soc., 1986, 108, 3925.
K.-S. Focsaneanu and J. C. Scaiano, Helv. Chim. Acta, 2006, 89,
2. C. Aprile, M. Boronat, B. Ferrer, A. Corma and H. García, J. Am.
Chem. Soc., 2006, 128, 8388.
3. Z. Zhang, A. Berg, H. Levanon, R. W. Fessenden and D. Meisel, J.
Am. Chem. Soc., 2003, 125, 7959.
4. A. Furube, L. Du, K. Hara, R. Katoh and M. Tachiya, Journal of the
American Chemical Society, 2007, 129, 14852.
5. R. Guo, D. Georganopoulou, S. W. Feldberg, R. Donkers and R. W.
Murray, Anal. Chem., 2005, 77, 2662.
6. K.-S. Focsaneanu and J. C. Scaiano, Helv. Chim. Acta, 2006, 89,
2
473.
5
6
.
.
J. D. Cuthbertson and D. W. C. MacMillan, Nature, 2015, 519, 74.
F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Eur. J. Org. Chem.,
2
010, 1875.
P. A. Baguley and J. C. Walton, Angew. Chem. Int. Ed., 2010, 30,
072; J. Hartung, M. E. Pulling, D. M. Smith, D. X. Yang and J. R.
7
8
.
.
3
Norton, Tetrahedron, 2008, 64, 11822.
F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev., 2002, 102,
2
473.
4
2
2
009; J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
011, 40, 102; T. P. Yoon, M. A. Ischay and J. Do, Nature Chem.,
010, 2, 527.
7. G. L. Hallett-Tapley, C. D'Alfonso, N. L. Pacioni, C. D. McTiernan,
M. Gonzalez-Bejar, O. Lanzalunga, E. I. Alarcon and J. C. Scaiano,
Chem. Comm., 2013, 49, 10073.
9
1
1
.
C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
013, 113, 5322.
3
8. B. Maillard, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc.,
1
2
983, 105, 5095.
0. J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam and C. R. J.
Stephenson, Nature Chem., 2012, 4, 854.
1. G. L. Hallett-Tapley, M. J. Silvero, C. J. Bueno-Alejo, M. Gonzalez-
Bejar, C. D. McTiernan, M. Grenier, J. C. Netto-Ferreira and J. C.
Scaiano, J. Phys. Chem. C, 2013, 117, 12279.
1
2. A. Corma and H. Garcia, Chem. Soc. Rev., 2008, 37, 2096; S. Sarina,
E. R. Waclawik and H. Zhu, Green Chem., 2013, 15, 1814; A. Primo,
T. Marino, A. Corma, R. Molinari and H. Garcia, J. Am. Chem. Soc.,
2
012, 134, 1892.
1
1
3. S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 2006, 35, 209; J. C.
Scaiano and K. Stamplecoskie, J. Phys. Chem. Lett., 2013, 4, 1177.
4. C. Fasciani, C. J. Bueno Alejo, M. Grenier, J. C. Netto-Ferreira and J.
C. Scaiano, Org. Lett., 2011, 13, 204; A. B. S. Bakhtiari, D. Hsiao, G.
Jin, B. D. Gates and N. R. Branda, Angew. Chem. Int. Ed., 2009, 48,
4166; L. Poon, W. Zandberg, D. Hsiao, Z. Erno, D. Sen, B. Gates and
N. Branda, ACS Nano, 2010, 4, 6395.
1
5. D. Combita, P. Concepción and A. Corma, J. Catal., 2014, 311, 339;
H. Zhu, X. Ke, X. Yang, S. Sarina and H. Liu, Angew. Chem. Int.
Ed., 2010, 49, 9657.
1
1
1
6. K. Hironaka, S. Fukuzumi and T. Tanaka, J. Chem. Soc., Perkin
Trans. II, 1984, 1705.
7. C.-J. Wallentin, J. D. Nguyen and C. R. J. Stephenson, Chimia, 2012,
6
6, 394.
8. A rough calculation based on the consumption of 30 mM substrate in
hours yields a rate of initiation of about 1.7 µM/s, which assuming
5
4
ꢀ|ꢀJ.ꢀName.,ꢀ2012,ꢀ00,ꢀ1-3ꢀ
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ2012ꢀ