Organic Letters
Letter
of 14 mA/cm3 and 8.3 min residence time, as compared to 74%
yield obtained in batch (H-cells) with 3−4.5 mA/cm3 current
density and 410 min residence time (entry 3 vs 4). Interestingly,
in continuous flow, the formation of byproduct 7 was suppressed
(entries 1−3 vs 4).
2014, 345, 437. For representative examples of using organoborons as
nucleophiles, see: (c) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science
2014, 345, 433.
(4) For representative reviews, see: (a) Weix, D. J. Acc. Chem. Res.
2015, 48, 1767. For selected examples, see: (b) Everson, D. A.;
Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920. (c) Wang, X.;
Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015, 137, 11562. For
representative example of nonmetallic reductant, see: (d) Suzuki, N.;
Hofstra, J. L.; Poremba, K. E.; Reisman, S. Org. Lett. 2017, 19, 2150.
(e) Anka-Lufford, L. L.; Huihui, K. M. M.; Gower, N. J.; Ackerman, L. K.
G.; Weix, D. J. Chem. - Eur. J. 2016, 22, 11564. (f) Kuroboshi, M.; Waki,
Y.; Tanaka, H. Synlett 2002, 2002, 637.
(5) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman,
L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(6) Sambiagio, C.; Sterckx, H.; Maes, B. U. W. ACS Cent. Sci. 2017, 3,
686.
(7) For pioneering studies, see: (a) Durandetti, M.; Nedelec, J.;
Perichon, J. J. Org. Chem. 1996, 61, 1748. For representative reviews,
see: (b) Chaussard, J.; Folest, J.; Nedelec, J.; Perichon, J.; Sibille, S.;
Troupel, M. Synthesis 1990, 1990, 369. (c) Horn, E. J.; Rosen, B. R.;
Baran, P. S. ACS Cent. Sci. 2016, 2, 302. For representative examples,
see: (d) Perkins, R. J.; Pedro, D. J.; Hansen, E. C. Org. Lett. 2017, 19,
3755. (e) Frankowski, K. J.; Liu, R.; Milligan, G. L.; Moeller, K. D.; Aube,
J. Angew. Chem., Int. Ed. 2015, 54, 10555. (f) Horn, E. J.; Rosen, B. R.;
Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016,
533, 77. (g) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D. − H.; Chen, J.; Starr,
J.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 7448. (h) Fu, N.; Sauer, G. S.;
Saha, A.; Loo, A.; Lin, S. Science 2017, 357, 575. (i) Fu, N.; Sauer, G. S.;
Lin, S. J. Am. Chem. Soc. 2017, 139, 15548. (j) Yang, Q.; Li, Y.; Ma, C.;
Fang, P.; Zhang, X.; Mei, T. J. Am. Chem. Soc. 2017, 139, 3293.
(k) Xiong, P.; Xu, H.; Xu, H. J. Am. Chem. Soc. 2017, 139, 2956. (l) Li, C.;
Kawamata, Y.; Nakamura, H.; Vantourout, J. C.; Liu, Z.; Hou, Q.; Bao,
D.; Starr, J. T.; Chen, J.; Yan, M.; Baran, P. S. Angew. Chem., Int. Ed. 2017,
56, 13088. (m) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017,
117, 13230.
In summary, we have demonstrated that electrochemically
generated, highly reactive, and short-lived radical species on a
solid-state electrode surface can be selectively incorporated into a
transition-metal catalysis manifold to form high-complexity
molecules productively. These electrochemically driven, Ni-
catalyzed decarboxylative Csp3−Csp2 cross-reductive couplings of
NHP ester with aryl halides exhibit broad substrate compatibility,
tolerance of a range of sterically and electronically diverse
coupling partners. Preliminary studies demonstrated improved
reaction performance and efficiency when carried out under
continuous flow conditions and delivered a method that is
amenable to rapid scale-up. The results reported herein provide a
new and practical method for the use of carboxylic acids as
precursors to C−C bond-forming reactions and allude to a broad
range of potential similar reaction manifolds that are currently
being pursued in our laboratories.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedure and analytical data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
(8) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008,
108, 2265.
ORCID
(9) For pioneering studies, see: (a) Okada, K.; Okamoto, K.; Oda, M. J.
Am. Chem. Soc. 1988, 110, 8736. (b) Okada, K.; Okamoto, K.; Morita,
N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.
(10) For selected recent examples, see: (a) Schnermann, M. J.;
Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576. (b) Cornella, J.;
Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio,
R.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016,
138, 2174. (c) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016,
352, 801. (d) Wang, J.; Qin, T.; Chen, T.-E.; Wimmer, L.; Edwards, J. T.;
Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed.
2016, 55, 9676. (e) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.;
Dixon, D. D.; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138,
11132. (f) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse,
K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.
(g) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017,
139, 12153. (h) Candish, L.; Teders, M.; Glorius, F. G. C. J. Am. Chem.
Soc. 2017, 139, 7440.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support of this work was partially provided by an SBIR
grant from NSF (164576). C.P.B, H.S., and T.F.J. also thank the
Bill and Melinda Gates Foundation (“Medicine for All”
Initiative) for financial support. H.S. thanks Amgen Graduate
Fellowship in Synthetic Chemistry.
REFERENCES
■
(1) (a) Metal-catalyzed Cross-coupling Reactions; Diederich, F., Stang,
P. J., Eds.; Wiley-VCH: New York, 1998. (b) Jana, R.; Pathak, T. P.;
Sigman, M. S. Chem. Rev. 2011, 111, 1417. (c) Manolikakes, G. 3.08
Coupling Reactions Between sp3 and sp2 Carbon Centers A2. In
Comprehensive Organic Synthesis II, 2nd ed.; Knochel, P., Molander, G.
A., Eds.; Elsevier: Amsterdam, 2014; pp 392−464.
(11) For representative examples of photoredox/nickel catalysis with
nonmetallic terminal reductants, see: (a) Duan, Z.; Li, W.; Lei, A. Org.
Lett. 2016, 18, 4012. (b) Paul, A.; Smith, M. D.; Vannucci, A. K. J. Org.
Chem. 2017, 82, 1996. (c) Zhang, P.; Le, C.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2016, 138, 8084.
(2) For representative reviews, see: (a) Tasker, S. Z.; Standley, E. A.;
Jamison, T. F. Nature 2014, 509, 299. (b) Tellis, J. C.; Kelly, C. B.;
Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res.
2016, 49, 1429. (c) Fu, G. C. ACS Cent. Sci. 2017, 3, 692. (d) Lucas, E.
L.; Jarvo, E. R. Nature Rev. Chem. 2017, 1, 0065.
(3) For representative reviews, see: (a) Twilton, J.; Le, C. C.; Zhang, P.;
Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nature Rev. Chem.
2017, 1, 0052. For representative examples, see: (b) Zuo, Z.; Ahneman,
T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science
(12) Using DIPEA as an anodic sacrificial reductant furnished
comparable results.
(13) (a) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2017,
Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
(14) HPLC analysis has shown that <1% substrate/product is present
in the outflow anodic stream.
D
Org. Lett. XXXX, XXX, XXX−XXX