Organic Letters
Letter
trans-Hydrometalation of Internal Alkynes. Applications to Natural
Product Synthesis. Bull. Chem. Soc. Jpn. 2016, 89, 135−160.
(5) Kumara Swamy, K. C.; Reddy, A. S.; Sandeep, K.; Kalyani, A.
Advances in Chemoselective and/or Stereoselective SemiHydrogena-
tion of Alkynes. Tetrahedron Lett. 2018, 59, 419−429.
(6) (a) Castro, C. E.; Stephens, R. D. The Reduction of Multiple
Bonds by Low-Valent Transition Metal Ions. The Homogeneous
Reduction of Acetylenes by Chromous Sulfate. J. Am. Chem. Soc.
1964, 86, 4358−4363. (b) Smith, A. B., III; Levenberg, P. A.; Suits, J.
Z. Reduction of α-Acetylenic Ketones to trans-Enones. Synthesis
1986, 1986, 184−189.
(7) Tani, K.; Iseki, A.; Yamagata, T. Efficient transfer hydrogenation
of alkynes and alkenes with methanol catalysed by hydrido(methoxo)-
iridium(III) complexes. Chem. Commun. 1999, 1821−1822.
(8) (a) Barrios-Francisco, R.; Garcia, J. J. Semihydrogenation of
Alkynes in the Presence of Ni(0) Catalyst using Ammonia-borane and
Sodium Borohydride as Hydrogen Source. Appl. Catal., A 2010, 385,
108−113. (b) Richmond, E.; Moran, J. Ligand Control of E/Z
Selectivity in Nickel-Catalyzed Transfer Hydrogenative Alkyne
Semireduction. J. Org. Chem. 2015, 80, 6922−6929.
“cocktail system” activates H2 and Z-alkene is liberated, and
then rapidly converted to E-alkene. The combination of Pd0
and ZnI2 is essential to promote isomerization without alkane
formation.
In conclusion, we have developed a catalytic process for the
semihydrogenation of internal alkynes with excellent E-
selectivity. Monitoring studies and control experiments
underline the significant role of ZnI2 in this process,
establishing that the transformation involves syn-hydrogena-
tion, followed by isomerization under a H2 atmosphere.
Finally, this simple and easy-to-handle system constitutes a
route to E-alkenes under mild conditions. Further studies are
currently under investigation to determine the role of ZnI2
more precisely and to elucidate the structure of the active
catalytic species.
ASSOCIATED CONTENT
■
S
* Supporting Information
(9) Fu, S.; Chen, N.; Liu, X.; Shao, Z.; Luo, S.; Liu, Q. Ligand-
Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes:
Stereodivergent Synthesis of Z- and E-Alkenes. J. Am. Chem. Soc.
2016, 138, 8588−8594.
The Supporting Information is available free of charge on the
Experimental data, product characterizations, and
spectral data for new compounds (PDF)
(10) (a) Li, J.; Hua, R. Stereodivergent Ruthenium-Catalyzed
Transfer Semihydrogenation of Diaryl Alkynes. Chem. - Eur. J. 2011,
17, 8462−8465. (b) Schabel, T.; Belger, C.; Plietker, B. A Mild
Chemoselective Ru-Catalyzed Reduction of Alkynes, Ketones, and
Nitro Compounds. Org. Lett. 2013, 15, 2858−2861. (c) Musa, S.;
Ghosh, A.; Vaccaro, L.; Ackermann, L.; Gelman, D. Efficient E-
Selective Transfer Semihydrogenation of Alkynes by Means of
Ligand-Metal Cooperating Ruthenium Catalyst. Adv. Synth. Catal.
2015, 357, 2351−2357. (d) Kusy, R.; Grela, K. E- and Z-Selective
Transfer Semihydrogenation of Alkynes Catalyzed by Standard
Ruthenium Olefin Metathesis Catalysts. Org. Lett. 2016, 18, 6196−
6199.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(11) (a) Shirakawa, E.; Otsuka, H.; Hayashi, T. Reduction of
Alkynes into 1,2-dideuterioalkenes with Hexamethyldisilane and
Deuterium Oxide in the Presence of a Palladium Catalyst. Chem.
Commun. 2005, 5885−5886. (b) Luo, F.; Pan, C.; Wang, W.; Ye, Z.;
Cheng, J. Palladium-catalyzed Reduction of Alkynes Employing
HSiEt3: Stereoselective Synthesis of trans- and cis-Alkenes.
Tetrahedron 2010, 66, 1399−1403. (c) Shen, R.; Chen, T.; Zhao,
Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang, X.; Goto, M.; Han, L.-B. Facile
Regio- and Stereoselective Hydrometalation of Alkynes with a
Combination of Carboxylic Acids and Group 10 Transition Metal
Complexes: Selective Hydrogenation of Alkynes with Formic Acid. J.
Am. Chem. Soc. 2011, 133, 17037−17044. (d) Zhong, J.-J.; Liu, Q.;
Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Li, Z.-J.; Chen, B.; Tung, C.-H.;
Wu, L.-Z. Combining Visible Light Catalysis and Transfer Hydro-
genation for in situ Efficient and Selective Semihydrogenation of
Alkynes under Ambient Conditions. Chem. Commun. 2016, 52,
1800−1803.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
́
We thank to Universite de Carthage for financial support (to
R. Maazaoui).
REFERENCES
■
(1) (a) Crespo-Quesada, M.; Cardenas-Lizana, F.; Dessimoz, A.-L.;
Kiwi-Minsker, L. Modern Trends in Catalyst and Process Design for
Alkyne Hydrogenations. ACS Catal. 2012, 2, 1773−1786. (b) Kluwer,
A. M.; Elsevier, C. J. Homogeneous Hydrogenation of Alkynes and
Dienes. In Handbook for Homogeneous Hydrogenation, 1st Edition; de
Vries, J. G., Elsevier, C. J., Eds.; Wiley−VCH: Weinheim, Germany,
2007; Vol. 1, pp 375−413.
(2) (a) Lindlar, H. Ein neuer Katalysator fur selektive Hydrierungen.
̈
(12) Liu, A.; Hu, L.; Chen, H.; Du, H. An Alkene-Promoted Borane-
Catalyzed Highly Stereoselective Hydrogenation of Alkynes to Give
Z- and E-Alkenes. Chem. - Eur. J. 2015, 21, 3495−3501.
Helv. Chim. Acta 1952, 35, 446−450. (b) Lindlar, H.; Dubuis, R.
Palladium Catalyst for Partial Reduction of Acatylenes. Org. Synth.
1966, 46, 89−91.
(13) Tokmic, K.; Fout, A. R. Alkyne Semihydrogenation with a Well-
Defined Nonclassical Co−H2Catalyst: A H2 Spin on Isomerization
and E-Selectivity. J. Am. Chem. Soc. 2016, 138, 13700−13705.
(14) Srimani, D.; Diskin-posner, Y.; Ben-David, Y.; Milstein, D. Iron
Pincer Complex Catalyzed, Environmentally Benign, E-Selective
Semi-Hydrogenation of Alkynes. Angew. Chem., Int. Ed. 2013, 52,
14131−14134.
(3) Pasto, D. J. Reductions of CC and C≡C by Noncatalytic
Chemical Methods. In Comprehensive Organic Synthesis; Trost, B. M.,
Flemming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 8, pp
471−488.
̈
(4) (a) Trost, B. M.; Ball, Z. T.; Joge, T. A Chemoselective
Reduction of Alkynes to (E)-Alkenes. J. Am. Chem. Soc. 2002, 124,
7922−7923. (b) Rummelt, S. M.; Radkowski, K.; Rosca, D.-A.;
(15) (a) Radkowski, K.; Sundararaju, B.; Furstner, A. A Functional-
̈
Furstner, A. Interligand Interactions Dictate the Regioselectivity of
̈
Group-Tolerant Catalytic trans Hydrogenation of Alkynes. Angew.
Chem., Int. Ed. 2013, 52, 355−360. (b) Guthertz, A.; Leutzsch, M.;
trans-Hydrometalations and Related Reactions Catalyzed by
[Cp*RuCl]. Hydrogen Bonding to a Chloride Ligand as a Steering
Principle in Catalysis. J. Am. Chem. Soc. 2015, 137, 5506−5519.
̀
Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Fares, C.; Thiel,
(c) Frihed, T. G.; Fu
̈
rstner, A. Progress in the trans-Reduction and
W.; Fu
̈
rstner, A. Half-Sandwich Ruthenium Carbene Complexes Link
E
Org. Lett. XXXX, XXX, XXX−XXX