Page 9 of 11
Journal of the American Chemical Society
Fragmentation Processes. Org. Lett. 2002, 4, 2345–2347.
Chem. 2004, 3393–3403.
(18)
Riber, D.; Skrydstrup, T. Sml2-Promoted Radical Addition of
Nitrones to α,β-Unsaturated Amides and Esters: Synthesis of γ-
Amino Acids via a Nitrogen Equivalent to the Ketyl Radical.
Org. Lett. 2003, 5, 229–231.
Hutton, T. K.; Muir, K. W.; Procter, D. J. Switching between
Novel Samarium(II)-Mediated Cyclizations by a Simple Change
in Alcohol Cosolvent. Org. Lett. 2003, 5, 4811–4814.
Masson, G.; Py. S.; Vallee, Y. Samarium Diiodide-Induced
Reductive Coupling of Nitrones with Aldehydes and Ketones.
Angew. Chem. Int. Ed. 2002, 41, 1772–1775.
(39)
(40)
Corey, E. J.; Zheng, G. Z. Catalytic Reactions of Samarium(II)
Iodide. Tetrahedron Lett. 1997, 38, 2045–2048.
Nomura, R.; Matsuno, T.; Endo, T. Samarium Iodide-Catalyzed
Pinacol Coupling of Carbonyl Compounds. J. Am. Chem. Soc.
1996, 118, 11666–11667.
Aspinall, H. C.; Greeves, N.; Valla, C. Samarium Diiodide-
Catalyzed Diastereoselective Pinacol Couplings. Org. Lett.
2005, 7, 1919–1922.
Orsini, F.; Lucci, E. M. Reformatsky Reactions with SmI2 in
Catalytic Amount. Tetrahedron Lett. 2005, 46, 1909–1911.
Hélion, F.; Namy, J. L. Mischmetall: An Efficient and Low Cost
Coreductant for Catalytic Reactions of Samarium Diiodide. J.
Org. Chem. 1999, 64, 2944–2946.
Lannou, M. I.; Hélion, F.; Namy, J. L. Some Uses of
Mischmetall in Organic Synthesis. Tetrahedron 2003, 59,
10551–10565.
Ueda, T.; Kanomata, N.; Machida, H. Synthesis of Planar-Chiral
Paracyclophanes via Samarium(II)-Catalyzed Intramolecular
Pinacol Coupling. Org. Lett. 2005, 7, 2365–2368.
Sun, L.; Sahloul, K.; Mellah, M. Use of Electrochemistry to
Provide Efficient SmI2 Catalytic System for Coupling
Reactions. ACS Catal. 2013, 3, 2568–2573.
Zhang, Y. F.; Mellah, M. Convenient Electrocatalytic Synthesis
of Azobenzenes from Nitroaromatic Derivatives Using SmI2.
ACS Catal. 2017, 7, 8480–8486.
Jenks, T. C.; Bailey, M. D.; Hovey, J. L.; Fernando, S.;
Basnayake, G.; Cross, M. E.; Li, W.; Allen, M. J. First Use of a
Divalent Lanthanide for Visible-Light-Promoted Photoredox
Catalysis. Chem. Sci. 2018, 9, 1273–1278.
Qiao, Y.; Schelter, E. J. Lanthanide Photocatalysis. Acc. Chem.
Res. 2018, 51, 2926–2936.
Richrath, R. B.; Olyschläger, T.; Hildebrandt, S.; Enny, D. G.;
Fianu, G. D.; Flowers, R. A., II. Gansäuer, A. Cp2TiX
Complexes for Sustainable Catalysis in Single-Electron Steps.
Chem. Eur. J. 2018, 24, 6371–6379.
Gansäuer, A.; Behlendorf, M.; von Laufenberg, D.; Fleckhaus,
A.; Kube, C.; Sadasivam, D. V.; Flowers, R. A., II. Catalytic,
Atom-Economical Radical Arylation of Epoxides. Angew.
Chem. Int. Ed. 2012, 51, 4739–4742.
Miller, R. S.; Sealy, J. M.; Shabangi, M.; Kuhlman, M. L.;
Fuchs, J. R.; Flowers, R. A., II. Reactions of SmI2 with Alkyl
Halides and Ketones: Inner-Sphere vs Outer-Sphere Electron
Transfer in Reactions of Sm(II) Reductants. J. Am. Chem. Soc.
2000, 122, 7718–7722.
Vestergren, M.; Gustafsson, B.; Johansson, A.; Håkansson, M.
Synthesis, Crystal Structure, and Chirality of Divalent
Lanthanide Reagents Containing Tri- and Tetraglyme. J.
Organomet. Chem. 2004, 689, 1723–1733.
Aspinall, H. C.; Dwyer, J. L. M.; Greeves, N.; Mciver, E. G.;
Woolley, J. C. Solubilized Lanthanide Triflatesꢀ: Lewis Acid
Catalysis by Polyether and Poly (Ethylene Glycol) Complexes
of Ln(OTf)3. Organometallics 1998, 3, 1884–1888.
Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Lewis
Acid Enhancement by Hydrogen-Bond Donors for Asymmetric
Catalysis. Science 2017, 358, 761–764.
1
2
3
4
5
6
7
8
(19)
(20)
(21)
(41)
(42)
(43)
Molander, G. A.; McKie, J. A. Synthesis of Substituted
Cyclooctanols by a Samarium(II) Iodide Promoted 8-Endo
Radical Cyclization Process. J. Org. Chem. 1994, 59, 3186–
3192.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(44)
(45)
(46)
(47)
(48)
(22)
Molander, G. A.; Harris, C. R. Sequenced Reactions with
Samarium(II)
Iodide.
Tandem
Nucleophilic
Acyl
Substitution/Ketyl-Olefin Coupling Reactions. J. Am. Chem.
Soc. 1996, 118, 4059–4071.
(23)
(24)
Kern, N.; Plesniak, M. P.; McDouall, J. J. W.; Procter, D. J.
Enantioselective Cyclizations and Cyclization Cascades of
Samarium Ketyl Radicals. Nat. Chem. 2017, 9, 1198–1204.
Parmar, D.; Matsubara, H.; Price, K.; Spain, M.; Procter, D. J.
Lactone Radical Cyclizations and Cyclization Cascades
Mediated by SmI2-H2O. J. Am. Chem. Soc. 2012, 134, 12751–
12757.
Szostak, M.; Procter, D. J. Concise Syntheses of Strychnine and
Englerin A: The Power of Reductive Cyclizations Triggered by
Samarium Iodide. Angew. Chem. Int. Ed. 2011, 50, 7737–7739.
Boffey, R. J.; Whittingham, W. G.; Kilburn, J. D.
Diastereoselective SmI2 Mediated Cascade Radical Cyclisations
(25)
(26)
(49)
(50)
of Methylenecyclopropane Derivatives
-
Syntheses of
Paeonilactone B and 6-Epi-Paeonilactone A. J. Chem. Soc.
Perkin 1 2001, 5, 487–496.
Sautier, B.; Lyons, S. E.; Webb, M. R.; Procter, D. J. Radical
Cyclization Cascades of Unsaturated Meldrum’s Acid
Derivatives. Org. Lett. 2012, 14, 146–149.
Huang, H. -M.; Procter, D. J. Radical Heterocyclization and
Heterocyclization Cascades Triggered by Electron Transfer to
Amide-Type Carbonyl Compounds. Angew. Chem. Int. Ed.
2017, 56, 14262–14266.
Desvergnes, S.; Py, S.; Vallée, Y. Total Synthesis of (+)-
Hyacinthacine A2 based on SmI2-Induced Nitrone Umpolung. J.
Org. Chem. 2005, 70, 1459–1462.
Howells, D. M.; Barker, S. M.; Watson, F. C.; Light, M. E.;
Hursthouse, M. B.; Kilburn, J. D. Samarium Diiodide Coupling
of Enones: A Remarkable Cascade Sequence. Org. Lett. 2004, 6,
1943–1945.
Rivkin, A.; Gonzalez-Lopez De Turiso, F.; Nagashima, T.;
Curran, D. P. Radical and Palladium-Catalyzed Cyclizations to
Cyclobutenes: An Entry to the BCD Ring System of Penitrem
D. J. Org. Chem. 2004, 69, 3719–3725.
Huang, H. -M.; Procter, D. J. Dearomatizing Radical
Cyclizations and Cyclization Cascades Triggered by Electron-
Transfer Reduction of Amide-Type Carbonyls. J. Am. Chem.
Soc. 2017, 139, 1661–1667.
Parmar, D.; Price, K.; Spain, M.; Matsubara, H.; Bradley, P. A.;
Procter, D. J. Reductive Cyclization Cascades of Lactones Using
SmI2-H2O. J. Am. Chem. Soc. 2011, 133, 2418–2420.
Huang, H. -M.; McDouall, J. J. W.; Procter, D. J. Radical
Anions from Urea-Type Carbonyls: Radical Cyclizations and
Cyclization Cascades. Angew. Chem. Int. Ed. 2018, 57, 4995–
4999.
(27)
(28)
(51)
(52)
(29)
(30)
(53)
(54)
(55)
(31)
(32)
(33)
(34)
(56)
(57)
Farran, H.; Hoz, S. Quantifying the Electrostatic Driving Force
behind SmI2 Reductions. Org. Lett. 2008, 10, 4875–4877.
Amiel-Levy, M.; Hoz, S. Guidelines for the Use of Proton
Donors in SmI2 Reactions: Reduction of α-Cyanostilbene. J.
Am. Chem. Soc. 2009, 131, 8280–8284.
Chopade, P. R.; Prasad, E.; Flowers, R. A., II. The Role of
Proton Donors in SmI2-Mediated Ketone Reduction: New
Mechanistic Insights. J. Am. Chem. Soc. 2004, 126, 44–45.
Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: California, 2006.
Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. Mechanistic Study of
SmI2/H2O and SmI2/Amine/H2O-Promoted Chemoselective
Reduction of Aromatic Amides (Primary, Secondary, Tertiary)
to Alcohols via Aminoketyl Radicals. J. Org. Chem. 2017, 82,
6528–6540.
(58)
(35)
Huang, H. -M.; Procter, D. J. Radical-Radical Cyclization
Cascades of Barbiturates Triggered by Electron-Transfer
Reduction of Amide-Type Carbonyls. J. Am. Chem. Soc. 2016,
138, 7770–7775.
Huang, H. -M.; Adams, R. W.; Procter, D. J. Reductive
Cyclisations of Amidines Involving Aminal Radicals. Chem.
Commun. 2018, 54, 10160–10163.
Huang, H. -M.; Procter, D. J. Selective Electron Transfer
Reduction of Urea-Type Carbonyls. Eur. J. Org. Chem. 2019,
313–317.
Dahlén, A.; Hilmersson, G. Samarium(II) Iodide Mediated
Reductions - Influence of Various Additives. Eur. J. Inorg.
(59)
(60)
(36)
(37)
(38)
(61)
Enemærke, R. J.; Hertz, T.; Skrydstrup, T.; Daasbjerg, K.
Evidence for Ionic Samarium(II) Species in THF/HMPA
Solution and Investigation of Their Electron-Donating
Properties. Chem. Eur. J. 2000, 6, 3747–3754.
ACS Paragon Plus Environment