3332
J . Org. Chem. 1999, 64, 3332-3334
Notes
Sch em e 1
Ad va n ta geou s Syn th eses of Stilben es via
Ben zotr ia zole-Sta bilized An ion s
Alan R. Katritzky,* Dmytro O. Tymoshenko, and
Sergei A. Belyakov
Center for Heterocyclic Compounds,
Department of Chemistry, University of Florida,
Gainesville, Florida, 32611-7200
Received November 13, 1998
In tr od u ction
dicate that the (E/Z)-ratio is not affected by changes in
concentration, mode of addition, or molar ratio of alde-
hyde to ylide, and only to a minor extent by the substitu-
tion in the aldehyde and aralkylidene-triphenylphos-
phorane precursors. Peterson olefinations require multi-
step syntheses of starting arylmethylsilanes, and for
stilbenes show low stereoselectivity.17 Stabilization of the
anion by an arylsulfonyl group in J ulia olefinations
affords high yields of 1,2-diphenyl-2-(phenylsulfonyl)-1-
ethanol intermediates, but high stereoselectivity was
demonstrated only for aliphatic derivatives.18,19 Our
recently reported20a,b addition of benzotriazole-stabilized
anions to carbonyl compounds and subsequent in situ
low-valent titanium dehydroxybenzotriazolylation of the
intermediate diastereoisomeric N-(â-hydroxyalkyl)ben-
zotriazoles gives predominantly trans-alkenes, -dienes,
and -trienes.20b
The use of an aldehyde as its enamine derivative can
limit possible side reactions, give higher yields, and form
selectively E-stilbenes.9 An alternative is the use of
arylsulfonylhydrazones,21 in a process similar to the
Shapiro reaction,22 and we recently23 demonstrated the
utility of R-(1-benzotriazolyl)ketone hydrazones 1 for the
preparation of alkynes 3 via dianion 2 (Scheme 1, Bt )
1-benzotriazolyl) by a Shapiro-like reaction.22,24
Stilbenes are well-known as optical brighteners1 and
synthetic precursors of phenanthrene alkaloids2 and
enantiomerically pure 1,2-diphenylethane-1,2-diamines3
and diols4 via asymmetric dihydroxylation. The growing
interest in diphenylethylene derivatives is connected with
the antileukemic,5 carcinostatic,6 and protein-tyrosine
kinase inhibitory7 activities of some synthetic as well as
naturally occurring8 stilbenes, specifically their trans-
isomers.
Syntheses of stilbenes from aryl aldehydes and stabi-
lized benzyl carbanions have gained increased impor-
tance.9 Frequently, the carbanion is stabilized using octet
enlargement, as by P, Si, and S heteroatoms at the
R-position of the benzyl intermediate in Wittig,10 Peter-
son,11 and J ulia12 reactions, respectively. In the well-
studied Wittig reaction, stilbenes are usually formed in
moderate to high yield as a mixture of (E)- and (Z)-
isomers together with triphenylphosphine as a side
product.9 Although the (E/Z)-ratio can be influenced by
varying some of the reaction conditions (solvent, tem-
perature, base, promotor, etc.),13-15 recent studies16 in-
(1) Zweidler, R.; Heinz, H. In Kirk-Othmer Encyclopedia of Chemical
Technology, 3rd ed.; Mark, H. F., Othmer, D. F., Overberger, C. G.,
Seaborg, G. T., Eds.; J ohn Wiley and Sons: New York, 1978; Vol. 4, p
213.
(2) Estevez, J . C.; Villaverde, M. C.; Estevez, R. J .; Seijas, J . A.;
Castedo, L. Can. J . Chem. 1990, 68, 964.
Resu lts a n d Discu ssion
(3) Pini, D.; Iuliano, A.; Rosini, C.; Salvadori, P. Synthesis 1990,
11, 1023.
(4) Tang, X.-Q.; Harvey, R. G. Tetrahedron Lett. 1995, 36, 6037.
(5) Mannila, E.; Talvitie A.; Kolehmaonen E. Phytochemistry 1993,
33, 813.
(6) Ohsumi K.; Tsuji T.; Morinaga Y.; Ohishi K. Eur. Pat. Appl. EP
641,767; Chem. Abstr. 1995, 122, 265183f.
(7) Thakkar, K.; Geahlen, R. L.; Cushman, M. J . Med. Chem. 1993,
36, 2950.
We have now found that reactions of benzotriazole
derivatives 4 with tosylhydrazones of carbonyl com-
pounds 5 in the presence of strong base provide a smooth
entry to E-stilbenes (Scheme 2, Table 1). The suggested
mechanism of this reaction (Scheme 2) involves the
(8) Si, J . Tianran Chanwu Yanjiu Yu Kaifa 1994, 6, 71; Chem. Abstr.
1995, 122, 213785j.
(9) Becker, K. B. Synthesis 1983, 5, 341.
(16) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. J . Org.
Chem. 1992, 57, 2865.
(17) Peterson, D. J . J . Org. Chem. 1968, 33, 780
(18) Baudin, J . B.; Hareau, G.; J ulia, S. A.; Ruel, O. Bull. Soc. Chim.
Fr. 1993, 130, 336.
(19) Baudin, J . B.; Hareau, G.; J ulia, S. A.; Lorne, R.; Ruel, O. Bull.
Soc. Chim. Fr. 1993, 130, 856.
(20) (a) Katritzky, A. R.; Li, J . J . Org. Chem. 1997, 62, 238. (b)
Katritzky, A. R.; Cheng, D.; Henderson, S. A.; Li, J . J . Org. Chem.
1998, 63, 6704.
(21) Vedejs, E.; Dolphin, J . M.; Stolle, W. T. J . Am. Chem. Soc. 1979,
101, 249.
(22) Shapiro, R. H. Tetrahedron Lett. 1968, 345.
(23) Katritzky, A. R.; Wang, J .; Karodia, N.; Li, J . J . Org. Chem.
1997, 62, 4142.
(10) Maguire, A. R. In Comprehensive Organic Functional Group
Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.;
Pergamon Press: New York, 1995; Vol. 1, p 589.
(11) Gosney, I.; Lloyd, D. In Comprehensive Organic Functional
Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W.,
Eds.; Pergamon Press: New York, 1995; Vol. 1, p 719.
(12) Kelly, S. E. In Comprehensive Organic Synthesis; Trost, B. M.,
Ed.; Pergamon Press: New York, 1991; Vol. 1, p 729.
(13) Drefahl, G.; Lorenz, D.; Schnitt, G. J . Prakt. Chem. 1964, 23,
143.
(14) Bottin-Strzalko, T.; Seyden-Penne, J .; Tchoubar, B. C. R. Acad.
Sci., Ser. C 1971, C272, 778; Chem. Abstr. 1971, 74, 111466d.
(15) J ohnson, A. W.; Kyllingstad, V. L. J . Org. Chem. 1966, 31, 334.
(24) Shapiro, R. H.; Heath, M. J . J . Am. Chem. Soc. 1967, 89, 5734.
10.1021/jo982262d CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/13/1999