Novel Deoxygenation Reaction of Epoxides by Indium
SCHEME 1a
the second ionization potential for indium is much higher
(18.86 eV). Indium metal has been successfully studied
as a single-electron transfer (SET) radical initiator in
tandem radical addition/cyclization/trapping reactions in
aqueous media or in alcohol solvents,36 and recently,
indium-iodine-mediated reductive radical cyclization of
iodoalkenes and iodoalkynes has been reported.37 Whereas
indium metal has been used for so many reduction
reactions, it has not been exploited in the reduction of
epoxides. Herein we report a novel deoxygenation reac-
tion of epoxides to alkenes mediated by electron transfer
from indium.
a Reagents and conditions: (a) indium (2 equiv), THF-H2O (1:
1), rt, 48 h, 22%.
SCHEME 2a
Alkenes are very important in organic synthesis (me-
tathesis, pericyclic reactions, Heck reaction, dihydroxyl-
ation, etc.). With a plethora of protective groups available
for various types of functional groups, it is rather
surprising that no practical protecting groups have been
developed for double bonds. Epoxidation can be used as
a means of protecting double bonds; however, the suc-
cessful implementation of this strategy would largely
depend on the effective deoxygenation of epoxides back
to alkenes. In efforts to explore a more facile and
environment-friendly protocol for the deoxygenation of
epoxides, we developed a mild methodology of deoxygen-
ation of epoxides with good radical-stabilizing groups
adjacent to the oxirane ring, using indium metal and
indium(I) chloride or ammonium chloride in alcohol as a
solvent. This reaction is a good complement to known
methods of deoxygenation of epoxides,38-54 showing ex-
a Reagents and conditions: (a) indium (2.7 equiv), NH4Cl (2
equiv), EtOH, 78 °C, 24 h, 22% (2), 19% (4).
quisite levels of chemoselectivity for epoxides bearing
radical-stabilizing groups on the epoxide carbons.
Results and Discussion
The deoxygenation of epoxides by indium metal was
discovered in our hands when radical ring-opening reac-
tions were attempted on 2-bromomethyl-3-phenyloxirane
1 with indium metal to yield cinnamyl alcohol in 22%
yield (Scheme 1).
When the reaction was repeated using indium and
ammonium chloride using ethanol as the solvent, cin-
namyl alcohol 2 was obtained in 22% yield along with
the 1-[(E)-3-ethoxyprop-1-enyl]benzene 4 in 19% yield
(Scheme 2).
(24) (a) Chao, L.-C.; Rieke, R. D. J. Org. Chem. 1975, 40, 2253. (b)
Yi, X.-H.; Meng, Y.; Li, C.-J. Tetrahedron Lett. 1997, 38, 4731. (c) Banik,
B. K.; Ghatak, A.; Becker, F. F. J. Chem. Soc., Perkin Trans. 1 2000,
2179. (d) Johar, P. S.; Araki, S.; Butsugan, Y. J. Chem. Soc., Perkin
Trans. 1 1992, 711.
(25) Kalyanam, N.; Rao, G. V. Tetrahedron Lett. 1993, 34, 1647.
(26) Ranu, B. C.; Dutta, J.; Guchhait, S. K. J. Org. Chem. 2001, 66,
5624.
(27) Ranu, B. C.; Dutta, J.; Guchhait, S. K. Org. Lett. 2001, 3, 2603.
(28) Khan, F. A.; Dash, J.; Sahu, N.; Gupta, S. Org. Lett. 2002, 4,
1015.
(38) (a) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654. (b) Vedejs,
E.; Fleck, T. J. J. Am. Chem. Soc. 1989, 111, 5861. (c) Arterburn, J.
B.; Liu, M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225.
(39) (a) Kaiser, E. M.; Edmonds, C. G.; Grubb, S. D.; Smith, J. W.;
Tramp, D. J. Org. Chem. 1971, 36, 330. (b) Gurudutt, K. N.; Pasha,
M. A.; Ravindranath, B.; Srinivas, P. Tetrahedron 1984, 40, 1629. (c)
Gurudutt, K. N.; Ravindranath, B. Tetrahedron Lett. 1980, 21, 1173.
(40) Fu¨rstner, A.; Hupperts, A. J. Am. Chem. Soc. 1995, 117, 4468.
(41) (a) Gansa¨uer, A. Synlett 1998, 801. (b) RajanBabu, T. V.;
Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986. (c) RajanBabu, T.
V.; Nugent W. A.; Beattie, M. S. J. Am. Chem. Soc. 1990, 112, 6408.
(d) Schobert, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 855.
(42) (a) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc.
1980, 102, 2693. (b) Molander, G. A. Chem. Rev. 1992, 92, 29. (c)
Concello´n, J. M.; Huerta, M.; Bardales, E. Tetrahedron 2004, 60, 10059.
(43) Dervan, P. B.; Shippey, M. A. J. Am. Chem. Soc. 1976, 98, 1265.
(44) Sonnet, P. E. J. Org. Chem. 1978, 43, 1841.
(29) Kim, B. H.; Cheong, J. W.; Han, R.; Jun, Y. M.; Baik, W.; Lee,
B. M. Synth. Commun. 2001, 31, 3577.
(30) Kang, K. H.; Choi, K. I.; Koh, H. Y.; Kim, Y.; Chung, B. Y.;
Cho, Y. S. Synth. Commun. 2001, 31, 2277.
(31) Chung, W. J.; Higashiya, S.; Oba, Y.; Welch, J. T. Tetrahedron
2003, 59, 10031.
(32) Araki, S.; Butsugan, Y. J. Chem. Soc., Chem. Commun. 1989,
1286.
(33) Bao, W.; Zhang, Y. Synlett 1996, 1187.
(34) Sugi, M.; Sakuma, D.; Togo, H. J. Org. Chem. 2003, 68, 7629.
(35) (a) Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146.
(b) Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem., Int. Ed. 2002, 41,
3901. (c) Hirashita, T.; Yamamura, H.; Kawai, M.; Araki, S. Chem.
Commun. 2001, 387. (d) Anwar, U.; Grigg, R.; Rasparini, M.; Savic,
V.; Sridharan, V. Chem. Commun. 2000, 645. (e) Anwar, U.; Grigg,
R.; Sridharan, V. Chem. Commun. 2000, 933. (f) Cooper, I. R.; Grigg,
R.; MacLachlan, W. S.; Thornton-Pett, M.; Sridharan, V. Chem.
Commun. 2002, 1372. (g) Kang, S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J.
Org. Chem. 2002, 67, 4376. (h) Pena, M. A.; Pe´rez, I.; Sestelo, J. P.;
Sarandeses, L. A. J. Chem. Soc., Chem. Commun. 2002, 2246.
(36) (a) Miyabe, H.; Naito, T. Org. Biomol. Chem. 2004, 2, 1267. (b)
Miyabe, H.; Ueda, M.; Nishimura, A.; Naito, T. Org. Lett., 2002, 4,
131. (c) Miyabe, H.; Nishimura, A.; Ueda, M.; Naito, T. Chem. Commun.
2002, 1454. (d) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.;
Takemoto, Y.; Naito, T. Org. Lett. 2003, 5, 3835. (e) Huang, T.; Heh,
C. C. K.; Li, C.-J. Chem. Commun. 2002, 2440. (f) Jang, D. O.; Cho, D.
H. Synlett 2002, 631.
(45) Kochi, J. K.; Singleton, D. M.; Andrews, L. J. Tetrahedron 1968,
24, 3503.
(46) Kupchan, S. M.; Maruyama, M. J. Org. Chem. 1971, 36, 1187.
(47) Clive, D. L. J.; Denyer, C. V. J. Chem. Soc., Chem. Commun.
1973, 253.
(48) Behan, J. M.; Johnstone, R. A. W.; Wright, M. J. J. Chem. Soc.,
Perkin Trans. 1 1975, 1216.
(49) (a) Vedejs, E.; Fuchs, P. L. J. Am. Chem. Soc. 1973, 95, 822.
(b) Vedejs, E.; Snoble, K. A. J.; Fuchs, P. L. J. Org. Chem. 1973, 38,
1178. (c) Bridges, A. J.; Whitham, G. H. J. Chem. Soc., Chem. Commun.
1974, 142.
(50) Isobe, H.; Branchaud, B. P. Tetrahedron Lett. 1999, 40, 8747.
(51) Patra, A.; Bandyopadhyay, M.; Mal, D. Tetrahedron Lett. 2003,
44, 2355.
(52) Matsubara, S.; Nonaka, T.; Okuda, Y.; Kanemoto, S.; Oshima,
K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1985, 58, 1480.
(53) Mandal, A. K.; Mahajan, S. W. Tetrahedron 1988, 44, 2293.
(54) Itoh, T.; Nagano, T.; Sato, M.; Hirobe, M. Tetrahedron Lett.
1989, 30, 6387.
(37) (a) Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.;
Takemoto, Y. Tetrahedron Lett. 2002, 43, 4585. (b) Yanada, R.; Koh,
Y.; Nishimori, N.; Matsumura, A.; Obika, S.; Mitsuya, H.; Fujii, N.;
Takemoto, Y. J. Org. Chem. 2004, 69, 2417. (c) Yanada, R.; Obika, S.;
Nishimori, N.; Yamauchi, M.; Takemoto, Y. Tetrahedron Lett. 2004,
45, 2331.
J. Org. Chem, Vol. 70, No. 10, 2005 4119