8
Y.-J. Li et al. / Journal of Organometallic Chemistry 902 (2019) 120957
Table 5
Catalytic amination of benzyl alcohol with anilinea.
Entry
Cat.
mol%
Time (h)
Conv. (%)
PhCH ¼ NPh: PhCH2NHPh
1
2
3
4
5
6
7
8
9
‒
12
24
24
24
12
24
24
24
24
trace
97
97
97
97
97
97
97
0
trans-Pyr-Ru-H 1
cis-Pyr-Ru-H 1
trans-Pyr-Ru-H 2
cis-Pyr-Ru-H 2
cis-Pyr-Ru-H 2
trans-Pyr-Ru-H 3
cis-Pyr-Ru-H 3
cis-Pyr-Ru-H 4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
3:97
12:88
10:90
32:68
20:80
8:92
6:94
0
a
Reaction condition: aniline (4 mmol)/benzyl alcohol (4 mmol)/catalyst/KOH (8 mmol) in toluene at 110 ꢀC.
3.50e3.53 (m, 4H, CH2O morpholine), 2.51e2.57 (m, 2H, CH2),
1.91e1.94 (m, 4H, CH2N morpholine), 1.39e1.45 (m, 2H,
CH2), ꢁ11.43 (t, 2JHP ¼ 18.9 Hz,1H, RuH). 13C{1H} NMR (CDCl3): 206.0
(t, JCP ¼ 16.5 Hz, CO), 158.7 (CH imine), 140.3 (C pyrrole), 139.6 (CH
pyrrole), 134.5 (t, JCP ¼ 5.8 Hz, CH PPh3), 134.0 (vt, JCP ¼ 20.6 Hz, C
PPh3), 129.5 (CH PPh3), 127.8 (t, JCP ¼ 4.5 Hz, CH PPh3), 114.8 (CH
pyrrole), 111.2 (CH pyrrole), 66.9 (CH2 morpholine), 57.7 (CH2), 57.4
(CH2), 53.8 (CH2 morpholine). 31P NMR (CDCl3): 46.8 (d,
(vt, JCP ¼ 20.6 Hz, C PPh3), 129.4 (CH PPh3), 127.8 (t, JCP ¼ 4.5 Hz, CH
PPh3), 124.8 (CH pyridine), 122.1 (CH pyridine), 115.4 (CH pyrrole),
111.3 (CH pyrrole), 66.8 (CH2). 31P NMR (CDCl3): 45.5 (d,
2JHP ¼ 18.9 Hz, PPh3). IR (KBr, cmꢁ1):
¼ 1901 (CO). Anal. Calcd. for
n
RuC48H41N3OP2: Calcd.: C: 68.72, H: 4.93, N: 5.01. Found: C: 66.92,
H: 4.67, N: 4.94. Small amount of solvent was packed in crystals
resulting inaccurate for the elemental analysis.
2JHP ¼ 18.9 Hz, PPh3). IR (KBr, cmꢁ1):
¼ 1905 (CO). Small amount of
n
methylene chloride was packed in crystals resulting inaccurate for
the elemental analysis.
4.2.6. Synthesis of cis-Pyr-Ru-H 3
Similar procedures used as for synthesizing cis-Pyr-Ru-H 1 are
adopted. Reactants L3H (0.40 g, 2.16 mmol), 2.5 M of n-BuLi
(0.95 mL, 2.38 mmol), RuHCl(CO)(PPh3)3 (2.06 g, 2.16 mmol) were
used. Compound cis-Pyr-Ru-H 3 was obtained in 46% yield (0.83 g).
1H NMR (CDCl3): 8.41 (m, 1H, CH pyridine), 7.25 (s, CH imine),
7.16e7.30 (m, 31H, pyridineþPPh3), 7.00 (m, 1H, CH pyridine), 6.40
(m, 1H, CH pyrrole), 6.31 (m, 1H, CH pyridine), 5.90 (m, 1H, CH
pyrrole), 5.72 (m, 1H, CH pyrrole), 4.39 (s, 2H, CH2), ꢁ10.93 (t,
2JHP ¼ 22.2 Hz, 1H, RuH). 13C{1H} NMR (CDCl3): 205.9 (t,
JCP ¼ 13.7 Hz, CO), 158.6 (C pyridine), 158.2 (CH imine), 149.2 (CH
pyridine), 141.4 (C pyrrole), 138.6 (CH pyrrole), 136.4 (CH pyridine),
134.4 (vt, JCP ¼ 20.6 Hz, C PPh3), 134.0 (t, JCP ¼ 5.8 Hz, CH PPh3),
129.2 (CH PPh3), 127.8 (t, JCP ¼ 4.5 Hz, CH PPh3), 123.2 (CH pyridine),
121.8 (CH pyridine), 114.8 (CH pyrrole), 111.6 (CH pyrrole), 67.3
4.2.4. Synthesis of cis-Pyr-Ru-H 2
Similar procedures used as for synthesizing cis-Pyr-Ru-H 1 are
adopted. Reactants L2H (0.40 g, 1.93 mmol), 2.5 M of n-BuLi
(0.85 mL, 2.12 mmol), RuHCl(CO)(PPh3)3 (1.84 g, 1.93 mmol) were
used. Compound cis-Pyr-Ru-H
2
was recrystallized from
dichloromethane/DMSO solution in 42% yield (0.70 g). 1H NMR
(CDCl3): 7.19e7.34 (m, 30H, PPh3), 7.18 (s, 1H, CH imine), 6.35 (s, 1H,
CH pyrrole), 5.82 (m, 1H, CH pyrrole), 5.66 (m, 1H, CH pyrrole),
3.59e3.62 (m, 4H, CH2O morpholine), 3.07e3.12 (m, 2H, CH2), 2.16
(m, 4H, CH2N morpholine), 1.74e1.79 (m, 2H, CH2), ꢁ10.80 (t,
2JHP ¼ 21.9 Hz, 1H, RuH). 13C{1H} NMR (CDCl3): 206.5 (t,
JCP ¼ 13.8 Hz, CO), 157.1 (CH imine), 141.3 (C pyrrole), 138.6 (CH
pyrrole), 134.3 (vt, JCP ¼ 20.6 Hz, C PPh3), 134.0 (t, JCP ¼ 5.9 Hz, CH
PPh3), 129.2 (CH PPh3), 127.8 (t, JCP ¼ 4.5 Hz, CH PPh3), 113.9 (CH
pyrrole), 111.1 (CH pyrrole), 67.0 (CH2 morpholine), 59.0 (CH2), 57.8
(CH2), 53.9 (CH2 morpholine). 31P NMR (CDCl3): 47.5 (d,
2
(CH2). 31P NMR (CDCl3): 46.5 (d, JHP ¼ 22.2 Hz, PPh3). IR (KBr,
cmꢁ1):
n
¼ 1914 (CO), 1940 (Ru-H). Small amount of solvent was
packed in crystals resulting inaccurate for the elemental analysis.
2JHP ¼ 21.9 Hz, PPh3). IR (KBr, cmꢁ1):
¼ 1913 (CO). Anal. Calcd. for
n
RuC49H47N3O2P2: Calcd.: C: 66.89, H: 5.61, N: 4.88. Found: C: 65.72,
H: 5.26, N: 4.80. Small amount of solvent was packed in crystals
resulting inaccurate for the elemental analysis.
4.2.7. Synthesis of cis-Pyr-Ru-H 4
Similar procedures used as for synthesizing cis-Pyr-Ru-H 1 are
adopted. Reactants L4H (0.10 g, 0.67 mmol), 2.5 M of n-BuLi
(0.32 mL, 0.80 mmol), RuHCl(CO)(PPh3)3 (0.64 g, 0.57 mmol) were
used. Compound cis-Pyr-Ru-H 4 was obtained in 74% yield (0.34 g).
1H NMR (CDCl3): 7.52 (s, CH imine), 7.20e7.33 (m, 30H, PPh3), 6.47
(m, 1H, CH pyrrole), 5.63 (m, 1H, CH pyrrole), 5.60 (m, 1H, CH pyr-
4.2.5. Synthesis of trans-Pyr-Ru-H 3
Similar procedures used as for synthesizing trans-Pyr-Ru-H 1
are adopted. Reactants L3H (0.40 g, 2.16 mmol), 2.5 M of n-BuLi
(0.95 mL, 2.38 mmol), RuHCl(CO)(PPh3)3 (2.06 g, 2.16 mmol) were
used. Compound trans-Pyr-Ru-H 3 was obtained in 36% yield
(0.64 g). 1H NMR (CDCl3): 8.33 (s, 1H, CH pyridine), 7.22e8.31 (m,
30H, PPh3), 6.89e7.08 (m, 3H, CH pyridineþpyrrole), 6.87 (s, 1H, CH
imine), 6.31 (m, 1H, CH pyridine), 6.22 (s, 1H, CH pyrrole), 5.95 (m,
1H, CH pyrrole), 3.88 (s, 2H, CH2), ꢁ11.31 (t, 2JHP ¼ 18.9 Hz, 1H, RuH).
13C{1H} NMR (CDCl3): 206.2 (t, JCP ¼ 16.8 Hz, CO), 159.6 (CH imine),
156.9 (C pyridine), 149.1 (CH pyridine), 140.7 (C pyrrole), 139.3 (CH
pyrrole), 135.6 (CH pyridine), 134.5 (t, JCP ¼ 6.1 Hz, CH PPh3), 134.1
t
2
role), 0.89 (s, 9H, Bu), ꢁ12.08 (t, JHP ¼ 24 Hz, 1H, RuH). 13C{1H}
NMR (CDCl3): 153.7 (CH imine), 142.4 (C pyrrole), 138.0 (CH pyr-
role), 134.4 (vt, JCP ¼ 20.6 Hz, C PPh3), 134.0 (t, JCP ¼ 6 Hz, CH PPh3),
129.3 (CH PPh3), 127.8 (t, JCP ¼ 4.5 Hz, CH PPh3), 114.1 (CH pyrrole),
110.6 (CH pyrrole), 59.2 (C tBu), 31.5 (Me tBu). 31P NMR (CDCl3): 44.5
2
(d, JHP ¼ 24 Hz, PPh3). IR (KBr, cmꢁ1):
n
¼ 1924 (CO), 2109 (Ru-H).
Small amount of solvent was packed in crystals resulting inaccurate
for the elemental analysis.