ChemComm
Communication
1
0304–10310; (c) S. E. Clapham, A. Hadzovic and R. H. Morris,
Coord. Chem. Rev., 2004, 248, 2201–2237; (d) J. Wu, F. Wang, Y. Ma,
X. Cui, L. Cun, J. Zhu, J. Deng and B. Yu, Chem. Commun., 2006,
1
766–1768.
2
3
(a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562–7563; (b) N. Uematsu, A. Fujii,
S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118,
4
916–4917.
(a) C. M. Moore and N. K. Szymczak, Chem. Commun., 2013, 49,
400–402; (b) R. Soni, J. M. Collinson, G. C. Clarkson and M. Wills,
Org. Lett., 2011, 13, 4304–4307; (c) R. Guo, C. Elpelt, X. Chen, D. Song
and R. H. Morris, Chem. Commun., 2005, 3050–3052; (d) S. E.
Clapham, A. Hadzovic and R. H. Morris, Coord. Chem. Rev., 2004,
Fig. 2 Deuterium labelling experiments support a ‘‘monohydride’’ pathway for
the transfer hydrogenation reaction.
2
48, 2201–2237.
mechanisms typically involve outer-sphere reduction of the
CQO or CQN bond in either a concerted or step-wise fashion.
To evaluate the potential role of metal–ligand cooperativity in the
cobalt transfer hydrogenation catalysis, the reactivity of 2 was
compared with the analogue 6, where the central N–H group on
the pincer ligand has been replaced with a methyl group. Complex
4
(a) M. Watanabe, Y. Kashiwame, S. Kuwata and T. Ikariya, Eur.
J. Inorg. Chem., 2012, 504–511; (b) A. Azua, S. Sanz and E. Peris,
Chem.–Eur. J., 2011, 17, 3963–3967; (c) H. V ´a zquez-Villa, S. Reber,
M. A. Ariger and E. M. Carreira, Angew. Chem., Int. Ed., 2011, 50,
15
8
979–8981; (d) F. E. Hahn, C. Holtgrewe, T. Pape, M. Martin, E. Sola
and L. A. Oro, Organometallics, 2005, 24, 2203–2209; (e) Z. R. Dong,
Y. Y. Li, J. S. Chen, B. Z. Li, Y. Xing and J. X. Gao, Org. Lett., 2005, 7,
1
043–1045.
6
displayed similar, although slightly diminished activity relative
to 2 for the transfer hydrogenation of acetophenone, affording
-phenylethanol in 85% isolated yield after 24 h at RT. These
5
(a) T. Zweifel, J. V. Naubron, T. B u¨ ttner, T. Ott and H. Gr u¨ tzmacher,
Angew. Chem., Int. Ed., 2008, 47, 3245–3249; (b) W. B. Cross,
C. G. Daly, Y. Boutadla and K. Singh, Dalton Trans., 2011, 40,
1
9
722–9730; (c) V. Gierz, A. Urbanite, A. Seyboldt and D. Kunz,
Organometallics, 2012, 31, 7532–7538.
6 (a) E. Vega, E. Lastra and M. P. Gamasa, Inorg. Chem., 2013, 52,
193–6198; (b) D. Carmona, F. J. Lahoz, P. Garc ´ı a-Ordu n˜ a and
results suggest that a metal–ligand cooperative interaction is not
essential for the transfer hydrogenation catalysis. In addition, no
chemoselectivity was exhibited by 2 in the transfer hydrogenation
of conjugated substrates. In previous reports, a lack of chemo-
selectivity has often been associated with transfer hydrogenation
6
L. A. Oro, Organometallics, 2012, 31, 3333–3345.
7
(a) S. Zhou, S. Fleischer, K. Junge, S. Das, D. Addis and M. Beller,
Angew. Chem., Int. Ed., 2010, 49, 8121–8125; (b) S. Enthaler,
B. Hagemann, G. Erre, K. Junge and M. Beller, Chem.–Asian J.,
1c
catalysts that operate by an inner-sphere mechanism. Overall,
these results suggest that the mechanism of the cobalt-catalyzed
transfer hydrogenation differs significantly from previously
reported iron systems, which are proposed to react by an outer-
2
006, 1, 598–604; (c) S. Enthaler, G. Erre, M. K. Tse, K. Junge and
M. Beller, Tetrahedron Lett., 2006, 47, 8095–8099; (d) G. Wienh ¨o fer,
I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar and
M. Beller, J. Am. Chem. Soc., 2011, 133, 12875–12879; (e) G. Wienh o¨ fer,
F. A. Westerhaus, R. V. Jagadeesh, K. Junge, H. Junge and M. Beller,
Chem. Commun., 2012, 48, 4827–4829; ( f ) G. Wienh ¨o fer, F. A.
Westerhaus, K. Junge and M. Beller, J. Organomet. Chem., 2013,
10,16
sphere pathway involving metal–ligand cooperativity.
The
differences in mechanism between the cobalt catalyst and related
iron catalysts may have important ramifications for future catalyst
design.
7
44, 156–159.
8
9
(a) C. Sui-Seng, F. N. Haque, A. Hadzovic, A. M. P u¨ tz, V. Reuss,
N. Meyer, A. J. Lough, M. Zimmer-De luliis and R. H. Morris, Inorg.
Chem., 2009, 48, 735–743; (b) N. Meyer, A. Lough and R. H. Morris,
Chem.–Eur. J., 2009, 15, 5606–5610.
T. Hashimoto, S. Urban, R. Hoshino, Y. Ohki, K. Tatsumi and
F. Glorius, Organometallics, 2012, 31, 4474–4479.
Finally, when the transfer hydrogenation reaction was carried
1
out in isopropanol-d
8
and monitored by H NMR spectroscopy, no
diamagnetic cobalt species were detected. This result, together with
the lower activity of the cobalt(III) complex 5 in the transfer 10 (a) A. A. Mikhailine, M. I. Maishan, A. J. Lough and R. H. Morris,
J. Am. Chem. Soc., 2012, 134, 12266–12280; (b) A. A. Mikhailine,
M. I. Maishan and R. H. Morris, Org. Lett., 2012, 14, 4638–4641;
hydrogenation reaction, suggests that complex 5 is unlikely to be
a catalyst resting state in the transfer hydrogenation reaction.
(
c) P. Sues, A. Lough and R. H. Morris, Organometallics, 2011, 30,
In conclusion, we have found that cobalt complex 2 is an
active catalyst for the transfer hydrogenation of CQO and CQN
bonds. Metal–ligand cooperativity is not required for the catalysis,
which likely proceeds through a cobalt monohydride intermediate.
This example of a homogeneous cobalt catalyst for transfer hydro-
genation underscores the potential of cobalt complexes to be
effective catalysts and expands the scope of possibilities for earth-
abundant metal catalyst design.
4418–4431; (d) P. O. Lagaditis, A. J. Lough and R. H. Morris, J. Am.
Chem. Soc., 2011, 133, 9662–9665.
1 (a) G. Zhang, B. L. Scott and S. K. Hanson, Angew. Chem., Int. Ed.,
1
2012, 51, 12102–12106; (b) G. Zhang, K. V. Vasudevan, B. L. Scott and
S. K. Hanson, J. Am. Chem. Soc., 2013, 135, 8668–8681.
2 (a) J. F. Sonnenberg, N. Coombs, P. A. Dube and R. H. Morris, J. Am.
Chem. Soc., 2012, 134, 5893–5899; (b) C. Sui-Seng, F. Freutel,
A. J. Lough and R. H. Morris, Angew. Chem., Int. Ed., 2008, 47,
940–943.
1
1
3 (a) S. Kuhl, R. Schneider and Y. Fort, Organometallics, 2003, 22,
4
184–4186; (b) M. Botta, F. De Angelis, A. Gambacorta, L. Labbiento
This work was funded by Los Alamos National Laboratory
LDRD Early Career Award (20110537ER).
and R. Nicoletti, J. Org. Chem., 1985, 50, 1916–1919.
14 (a) J. S. M. Samec, J. E. B ¨a ckvall, P. G. Andersson and P. Brandt,
Chem. Soc. Rev., 2006, 35, 237–248; (b) J. E. B ¨a ckvall, J. Organomet.
Chem., 2002, 652, 105–111.
5 For representative examples, see: (a) M. Yamakawa, H. Ito and
R. Noyori, J. Am. Chem. Soc., 2000, 122, 1466–1478; (b) V. Rautenstrauch,
X. Hoang-Cong, R. Churlaud, K. Abdur-Rashid and R. H. Morris,
Chem.–Eur. J., 2003, 9, 4954–4967; (c) C. P. Casey, G. A. Bikzhanova,
Q. Cui and I. A. Guzei, J. Am. Chem. Soc., 2005, 127, 14062–14071;
(d) S. Takebayashi, N. Dabral, M. Miskolzie and S. H. Bergens, J. Am.
Chem. Soc., 2011, 133, 9666–9669 and references therein.
Notes and references
1
‡
The addition of base did not promote cobalt catalyst 2. Only 30%
conversion was observed in the transfer hydrogenation of acetophe-
none and isopropanol with added KO Bu (4 mol%). A 95% yield of
t
1
-phenylethanol was obtained under the same reaction conditions
using K CO (4 mol%).
2
3
1
(a) S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226–236; 16 D. E. Prokopchuk and R. H. Morris, Organometallics, 2012, 31,
b) A. Robertson, T. Matsumoto and S. Ogo, Dalton Trans., 2011, 40, 7375–7385.
(
This journal is c The Royal Society of Chemistry 2013
Chem. Commun.