ChemCatChem
10.1002/cctc.201801837
FULL PAPER
organic transformations. Kinetic studies revealed that the
positive aggregation effect on the substrate specificity is the
result of specific inclusion properties of the artificial reaction
cavities generated by the self-assembly of the flavin unit.
[2]
M. Kunishima, K. Hioki, T. Moriya, J. Morita, T. Ikuta, S. Tani, Angew.
Chem. Int. Ed. 2006, 45, 1252–1255.; Angew. Chem. 2006, 118,
1270–1274.
[
[
[
3]
4]
5]
(a) Review: F. Bellia, D. La Mendola, C. Pedone, E. Rizzarelli, M.
Saviano, G. Vecchio, Chem. Soc. Rev. 2009, 38, 2756–2781. (b) M.
Kunishima, K. Yoshimura, H. Morigaki, R. Kawamata, K. Terao, S.
Tani, J. Am. Chem. Soc. 2001, 123, 10760−10761. (c) M. Kunishima,
Y. Watanabe, K. Terao, S. Tani, Eur. J. Org. Chem. 2004, 4535–4540.
Experimental Section
(
d) T. H. Fenger, M. Bols, Chem. Commun. 2010, 46, 7769–7771. (e)
L. G. Marinescu, M. Bols, Angew. Chem. Int. Ed. 2006, 45,
590−4593; Angew. Chem. 2006, 118, 4706−4709.
General: Riboflavin 2’,3’,4’,5’-tetraoctadecanoate (1a) was prepared by
4
the reaction of riboflavin and stearic anhydride in boiling CH
2 2
Cl and
(a) K. Maruoka, S. Saito, A. B. Concepcion, H. Yamamoto, J. Am.
Chem. Soc. 1993, 115, 1183−1184. (b) M. Yasuda, H. Nakajima, R.
Takeda, S. Yoshioka, S. Yamasaki, K. Chiba, A. Baba, Chem. Eur. J.
pyridine in the presence of catalytic amount of 4-(N,N-
a
dimethylamino)pyridine. Riboflavin 2’,3’,4’,5’-tetrabutanoate (1b) was
commercially available and used without further purification. The yields
of the products and the conversion of the olefins were determined by
GLC analysis using a Shimadzu GC-17A chromatograph with an
Intercap 1 analytical column (0.25 mm×30 m).
2
011, 17, 3856–3867. (c) H. Nakajima, M. Yasuda, R. Takeda, A.
Baba, Angew. Chem. Int. Ed. 2012, 51, 3867−3870; Angew. Chem.
012, 124, 3933−3936. (d) T. Fujihara, K. Semba, J. Terao, Y. Tsuji,
Angew. Chem. Int. Ed. 2010, 49, 1472–1476; Angew. Chem. 2010,
22, 1514–1518.
(a) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed.
009, 48, 3418–3438; Angew. Chem. 2009, 121, 3470–3490. (b) M. D.
Pluth, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2009, 42,
650–1659. (c) D. M. Vriezema, M. C. Aragone`s, J. A. A. W. Elemans,
J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005,
05, 1445–1489.
2
1
Measurement of the gelation properties
2
A 10 mm×1.0 mm UV cell was charged with a hot homogeneous
solution of 1a in an organic solvent. The gelation properties were
assessed after the solution was sonicated at 298 K using a Honda W-
1
103T ultrasonic cleaner, and standing for 5 min at room temperature.
1
The phase states were confirmed by visual observation of the complete
disappearance of fluidity of inverted samples. Gelation profiles were
examined by plotting baseline absorptions at 700 nm using a Shimadzu
MultiSpec-1500 UV-vis spectrometer (Figure 2). Rheological data were
obtained using a strain-controlled rheometer (TA Instruments ARES)
with steel parallel-plate geometry (25 mm diameter) (Figure 3). The
morphologies of the dried gels were observed using SEM (Keyence VE-
[
[
6]
7]
(a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459. (b) A. Corma, H.
García, I. Llabrés, F. X. Xamena, Chem. Rev. 2010, 110, 4606–4655.
(a) C. W. Jones, K. Tsuji, M. E. Davis, Nature 1998, 393, 52−54. (b) A.
Katz, M. E. Davis, Nature 2000, 403, 286−289. (c) C. Zapilko, Y. Liang,
W. Nerdal, R. Anwander, Chem. Eur. J. 2007, 13, 3169−3176. (d) K.
Inumaru, T. Kasahara, M. Yasui, S. Yamanaka, Chem. Commun.
7800) at an acceleration voltage of 2 kV (Figure 4).
2005, 2131−2133. (e) M. Tada, T. Sasaki, Y. Iwasawa, Phys. Chem.
Chem. Phys. 2002, 4, 4561−4574. (f) M. Tada, Y. Iwasawa, Chem.
Commun. 2006, 2833−2844. (g) Y. Yang, Z. Weng, S. Muratsugu, N.
Ishiguro, S.-I. Ohkoshi, M. Tada, Chem. Eur. J. 2012, 18, 1142−1153.
(h) Y. Shiraishi, D. Tsukamoto, T. Hirai, Langmuir 2008, 24,
12658−12663.
Aerobic reduction of olefins with gel catalyst
A mixture of olefin (1.0×10–1 mmol) and 1a (17.3 mg, 1.2×10–2 mmol) in
butanenitrile (0.8 mL) was warmed up for 2 min, sonicated (45 kHz, 0.38
2
[8]
[9]
M. Tamura, K. Sawabe, K. Tomishige, A. Satsuma, K-i Shimizu, ACS
Catal. 2015, 5, 20–26.
W/cm ) for 30 s, and stood at room temperature for 5 min to afford a
2 2 2
yellow opaque gel. NH NH ∙H
O (2.0×10–1 mmol, 2.0 equiv) was added
to the resultant gel, and the mixture was stirred at 30 ºC under air. The
conversions of the olefins and the yields of the product alkanes were
monitored periodically by GLC analysis using an internal standard
Y. Yoshinaga, K. Seki, T. Nakato, T. Okuhara, Angew. Chem. Int. Ed.
1997, 36, 2833–2835; Angew. Chem. 1997, 109, 2946–2948.
[10] W. J. H. van Berkel, N. M. Kamerbeek, M. W. Fraaije, J. Biotechnol.
(tridecane).
2006, 124, 670–689.
[
11] (a) P. F. Fitzpatrick, Acc. Chem. Res. 2001, 34, 299–307. (b) D. P.
Ballou, In Flavins and Flavoproteins; V. Massey, C. H. Williams, Eds.;
Elsevier: New York, 1982; pp 301–310. (c) S. Weber; E. Schleicher
Eds., Flavins and Flavoproteins: Methods and Protocols, Methods in
Molecular Biology, vol. 1146; Springer New York 2014.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
[12] (a) Y. Imada, T. Naota, Chem. Rec. 2007, 7, 354–361. (b) Y. Imada, H.
Iida, T. Naota, J. Am. Chem. Soc. 2005, 127, 14544–14545. (c) Y.
Imada, H. Iida, S.-I. Murahashi, T. Naota, Angew. Chem. Int. Ed. 2005,
(
JP15H03796, JP16H06516).
4
4, 1704–1706; Angew. Chem. 2005, 117, 1732–1734. (d) Y. Imada,
Keywords: flavin • hydrogenation • olefin • substrate specificity
T. Kitagawa, T. Ohno, H. Iida, T. Naota, Org. Lett. 2010, 12, 32–35.
•
supramolecular gel
[13] (a) Y. Imada, H. Iida, T. Kitagawa, T. Naota, Chem. Eur. J. 2011, 17,
5908–5920. (b) Y. Imada, Y. Kugimiya, S. Iwata, N. Komiya, T. Naota,
[
1]
(a) W. B. Motherwell, M. J. Bingham, Y. Six, Tetrahedron 2001, 57,
Tetrahedron 2013, 69, 8572–8578. (c) Y. Imada, T. Kitagawa, S. Iwata,
N. Komiya, T. Naota, Tetrahedron 2014, 70, 495–501.
4663–4686.ꢀ(b) R. Breslow, Ed. Artificial Enzymes; Wiley-VCH:
Weinheim, 2005. (c) A. J. Kirby, F. Hollfelder, From Enzyme Models to
Model Enzymes; RSC Publishing, Cambridge, 2009. (d) Z. Dong, Q.
Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890–7908. (e) M. Raynal, P.
Ballester, A. Vidal-Ferrana, P. W. N. M. van Leeuwen, Chem. Soc.
Rev. 2014, 43, 1734–1787.
[14] S. S. Agasti, S. T. Caldwell, G. Cooke, B. J. Jordan, A. Kennedy, N.
Kryvokhyzha, G. Rabani, S. Rana, A. Sanyal, V. M. Rotello, Chem.
Commun. 2008, 4123–4125.
[15] Y. Arakawa, K. Yamanomoto, H. Kita, K. Minagawa, M. Tanaka, N.
Haraguchi, S. Itsuno, Y. Imada, Chem. Sci. 2017, 8, 5468–5475.
[
16] Y. Imada, M. Osaki, M. Noguchi, T. Maeda, M. Fujiki, S. Kawamorita,
N. Komiya, T. Naota, ChemCatChem. 2015, 7, 99–106.
This article is protected by copyright. All rights reserved.