10.1002/chem.201902668
Chemistry - A European Journal
COMMUNICATION
[1]
For reviews, see: a) Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K.
Barta, Chem. Rev. 2018, 118, 614-678; b) C. Li, X. Zhao, A. Wang, G.
W. Huber, T. Zhang, Chem. Rev. 2015, 115, 11559-11624; c) J.
Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen,
Chem. Rev. 2010, 110, 3552-3599.
We hypothesize that the HDO of phenols into arenes
catalyzed by [bmim][OTf]/Pt/H-ZSM-5 proceeds through path B
shown in Scheme 1. As discussed in the introduction part, there
are several possibility for the HDO pathway. The most often
found mechanism is the hydrogenation of phenols to
cycloalkanols followed by the dehydration and the
dehydrogenation (Scheme S1).3,5c,5h Therefore, we performed
the control experiment using 4-propylcyclohexanol 5 as a
substrate (Scheme 2) to reveal whether the HDO by
[bmim][OTf]/Pt/H-ZSM-5 proceeded through the pathway. As a
result, our catalyst did not give 2 at all, thus indicating that the
path B is more plausible for the HDO by [bmim][OTf]/Pt/H-ZSM-5.
[2]
[3]
[4]
a) T. Renders, S. Van den Bosch, S.-F. Koelewijn, W. Schutyser, B. F.
Sels, Energy Environ. Sci. 2017, 10, 1551-1557; b) M. D. Kärkäs,
ChemSusChem 2017, 10, 2111-2115.
For reviews, see: a) A. M. Robinson, J. E. Hensley, J. W. Medlin, ACS
Catal. 2016, 6, 5026-5043; b) D. A. Ruddy, J. A. Schaidle, J. R. Ferrell
III, J. Wang, L. Moens, J. E. Hensley, Green Chem. 2014, 16, 454-490.
Selected recent papers about the HDO of phenols into arenes: a) P. M.
de Souza, R. C. Rabelo-Neto, L. E. P. Borges, G. Jacobs, B. H. Davis,
U. M. Graham, D. E. Resasco, F. B. Noronha, ACS Catal. 2015, 5,
7385-7398; b) C. Chen, G. Chen, F. Yang, H. Wang, J. Han, Q. Ge, X.
Zhu, Chem. Eng. Sci. 2015, 135, 145-154; c) X. Zhu, L. Nie, L. L.
Lobban, R. G. Mallinson, D. E. Resasco, Energy Fuels 2014, 28, 4104-
4111; d) J. Sun, A. M. Karim, H. Zhang, L. Kovarik, X. S. Li, A. J.
Hensley, J.-S. McEwen, Y. Wang, J. Catal. 2013, 306, 47-57; e) A. L.
Jongerius, R. Jastrzebski, P. C. A. Bruijnincx, B. M. Weckhuysen, J.
Catal. 2012, 285, 315-323.
[5]
a) C. Wang, A. V. Mironenko, A. Raizada, T. Chen, X. Mao, A.
Padmanabhan, D. G. Vlachos, R. J. Gorte, J. M. Vohs, ACS Catal.
2018, 8, 7749-7759; b) N. Duong, Q. Tan, D. E. Resasco, C. R. Chimie
2018, 21, 155-163; c) J. Zhang, L. D. Ellis, B. Wang, M. J. Dzara, C.
Sievers, S. Pylypenko, E. Nikolla, J. W. Medlin, Nat. Catal. 2018, 1,
148-155; d) Y. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S. F. Parker, Y.
Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, S. Yang, Y. Wang, Nat.
Commun. 2017, 8, 16104-16112; e) Z. Luo, Z. Zheng, Y. Wang, G. Sun,
H. Jiang, C. Zhao, Green Chem. 2016, 18, 5845-5858; f) Q. Tan, G.
Wang, L. Nie, A. Dinse, C. Buda, J. Shabaker, D. E. Resasco, ACS
Catal. 2015, 5, 6271-6283; g) S. Kusumoto, K. Nozaki, Nat. Commun.
2015, 6, 6296-6302; h) X. Wang, R. Rinaldi, Angew. Chem. Int. Ed.
2013, 52, 11499-11503; i) P. T. M. Do, A. J. Foster, J. Chen, R. F. Lobo,
Green Chem. 2012, 14, 1388-1397.
Scheme 2. A control experiment for elucidation of reaction pathways.
In summary, we developed the selective HDO of phenols
into arenes at 110 °C under atmospheric pressure H2 by a
[bmim][OTf]-modified Pt/H-ZSM-5 catalyst. Unmodified catalyst
gave aliphatic species as the major products, whereas the
modified one afforded arenes up to 72% yield and 76%
selectivity. The type of ILs used for the surface modification
greatly affected the reaction progress and product distributions.
Although the reaction mechanism is still not clear, we consider
that the HDO by [bmim][OTf]/Pt/H-ZSM-5 proceeded through
path B shown in Scheme 1. The control of the adsorption mode
of phenols onto the catalyst surface and the concentration of
surface hydrogen species may be crucial for obtaining high
arene selectivity. The detailed mechanistic studies and the
development of new catalysts based on the catalyst design
concept obtained from this study are currently underway.
[6]
[7]
H. Ohta, K. Yamamoto, M. Hayashi, G. Hamasaka, Y. Uozumi, Y.
Watanabe, Chem. Commun. 2015, 51, 17000-17003.
a) J. Engelhardt, P. Lyu, P. Nachtigall, F. Schüth, Á. M. García,
ChemCatChem 2017, 9, 1985-1991; b) H. Wan, R. V. Chaudhari, B.
Subramaniam, Top Catal. 2012, 55, 129-139; c) Y. Romero, F. Richard,
S. Brunet, Appl. Catal. B: Environ. 2010, 98, 213-223; d) E.-J. Shin, M.
A. Keane, Ind. Eng. Chem. Res. 2000, 39, 883-892; e) G. Neri, A. M.
Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Appl. Catal.
A: Gen. 1994, 110, 49-59.
[8]
[9]
Z. Luo, C. Zhao, Catal. Sci. Technol. 2016, 6, 3476-3484.
a) R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357-6426;
b) W. Zhou, S. Inoue, T. Iwahashi, K. Kanai, K. Seki, T. Miyamae, D.
Kim, Y. Katayama, Y. Ouchi, Electrochem. Commun. 2010, 12, 672-
675; c) L. Leclercq, A. R. Schmitzer, Supramol. Chem. 2009, 21, 245-
263.
Acknowledgements
This work was supported by JSPS KAKENHI (grant number
JP17K14863) and the Cooperative Research Program of
Institute for Catalysis, Hokkaido University (grant numbers
16B1014). We thank the Divisions of Applied Protein Research
and Material Science of the Advanced Research Support Center
(ADRES), Ehime University for MS and NMR measurements.
The XAFS experiments were performed at the BL14B2 beamline
of SPring-8 with the approval of the Japan Synchrotron
Radiation Institute (JASRI), proposal Nos. 2017A1576 and
2018A1736.
[10] a) Z. Lei, C. Dai, B. Chen, Chem. Rev. 2014, 114, 1289-1326; b) J. O.
Valderrama, W. W. Sanga, J. A. Lazzús, Ind. Eng. Chem. Res. 2008,
47, 1318-1330.
[11] a) O. Brummel, F. Faisal, T. Bauer, K. Pohako-Esko, P. Wasserscheid,
J. Libuda, Electrochim. Acta 2016, 188, 825-836; b) J. Arras, E. Paki, C.
Roth, J. Radnik, M. Lucas, P. Claus, J. Phys. Chem. C 2010, 114,
10520-10526; c) J. Arras, M. Steffan, Y. Shayeghi, D. Ruppert, P.
Claus, Green Chem. 2009, 11, 716-723; d) C. W. Scheeren, G.
Machado, S. R. Teixeira, J. Morais, J. B. Domingos, J. Dupont, J. Phys.
Chem. B 2006, 110, 13011-13020.
[12] C. A. Schoenbaum, D. K. Schwartz, J. W. Medlin, Acc. Chem. Res.
2014, 47, 1438-1445.
Keywords: hydrodeoxygenation • phenols • arenes • ionic liquid
[13] M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder
Patterns for Zeolites, 5th ed., Elsevier, Amsterdam, 2007.
• platinum
[14] a) P. He, Y. Lou, H. Song, Fuel 2016, 182, 577-587; b) H. Wen, Y.
Zhou, J. Xie, Z. Long, W. Zhang, J. Wang, RSC Adv. 2014, 4, 49647-
This article is protected by copyright. All rights reserved.