3
3. Conclusion
Mn2(CO)10 (5 mol%)
+
Ph
Et3SiH
Ph
SiEt3
In conclusion, we have reported an example of
dehydrogenative coupling of allyl arenes with silanes enabled by
a commercially available Mn2(CO)10 complex catalysis. This
manganese catalytic regime can provide an access to extensive
library of allylsilanes from cheap and easily available alkenes and
silanes with effectively selectivity, wide scope tolerance and
good yields. A proposed mechanism is suggested based on
experimental studies and references. This method can provide a
robust path to synthetically relevant allylsilanes. Further
1a (30 mmol)
3a (1.63 g, 70%)
2a (10 mmol)
Scheme 3. Gram scale test
2.3. Mechanism studies
In order to have an insight of the mechanism, a series of
experiments were carried out (Scheme 4). Radical trapping test
supports the inference of its radical process (Scheme 4, a).
Deuterium labeling study (Scheme 4, b) provides evidence for
the existence of the proposed intermediate D (Scheme 4, e),
which can lead to both observed products But the following β-C-
H bond cleavage of D may not be the rate-limiting step as
implied by the KIE test (Scheme 4, c). We also suspect that
preference of selective β-hydrogen might be determined
thermodynamically by the substrate structure, as linear alkene 1o
bias the selectivity toward vinylsilane product (Scheme 4, d).
investigations
on
manganese
catalysis
and
alkene
functionalizations are ongoing in our group.
Acknowledgments
This work is supported by the National Natural Science
Foundation of China (No. 21962017, 21968032 and 51563022),
the Fundamental Research Funds for the Central Universities
(31920190016, 31920200086, 31920200042, 31920200002), and
the Northwest Minzu University’s Double First-class and
Characteristic Development Guide Special Funds-Chemistry Key
Disciplines in Gansu Province (No. 11080316).
(a) Radical trapping
Standard conditions
+ Et3SiH
Ph
SiEt3
+
+
Ph
SiEt3
Ph
TEMPO or BHT
trace
1a
trace
2a
References and notes
(b) Deuterium labeling
Standard conditions
+ Et3SiH
Ph
Ph
Ph
SiEt3
SiEt3
Ph
Ph
SiEt3
SiEt3
1.
For allylsilanes in synthesis: a) T. K. Sakar, Sci. Synth. 2002, 4,
837; b) A. Hosomi, Acc. Chem. Res. 1988, 21, 200; c) Y.
Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207; d) C. E.Masse, J.
S. Panek, Chem. Rev. 1995, 95, 1293; e) S. E.Denmark, J. Fu,
Chem. Rev. 2003, 103, 2763; f) I. Fleming A. Barbero, D. Walter,
Chem. Rev. 1997, 97, 2063.
72%
52%
1a
2%
D
2a
D
D
D
D
Standard conditions
+
+ Et3SiH
Ph
1a[D]
2a
20%
(c) KIE study
2.
3.
K. M. Korch, D. A. Watson, Chem. Rev. 2019, 119, 8192.
Initial study of palladium catalyzed silyl-Heck reaction: a) H.
Yamashita, T. Kobayashi, T. Hayashi, M. Tanaka, Chem. Lett.
1991, 20, 761; palladium catalyzed silyl-Heck reaction providing
allyl silaines: b) J. R. McAtee, S. E. Martin, D. T. Ahneman, K. A.
Johnson, D. A. Watson, Angew. Chem. Int. Ed. 2012, 51, 3663; c)
J. R. McAtee, G. P. A. Yap, D. A. Watson, J. Am. Chem. Soc.
2014, 136, 10166; d) S. B. Krause, J. R. McAtee, G. P. A. Yap, D.
A. Watson, Org. Lett. 2017, 19, 5641.
C. Atienza, T. Diao, K. Weller, S. Nye, K. Lewis, J. Delis, J.
Boyer, A. Roy, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 12108.
W. Yu, Y. Luo, L. Yan, D. Liu, Z. Wang, P. Xu, Angew. Chem.
Int. Ed. 2019, 58, 10941.
Other examples: a) C. Cheng, E. M. Simmons, J. F. Hartwig,
Angew. Chem. Int. Ed. 2013, 52, 8984; b) M. P. Doyle, G. A.
Devora, A. O. Nefedov, K. G. high, Organometallics, 1992, 11,
549; c) A. M. LaPointe, F. C.Rix, M. Brookhart, J. Am. Chem.
Soc. 1997, 119, 906; d) Y. Jiang, O. Blacque, T. Fox, C. M. Frech,
H. Berke, Chem. Eur. J. 2009, 15, 2121; e) R. N. Naumov, M.
Itazaki, M. Kamitani, H. Nakazawa, J. Am. Chem. Soc. 2012, 134,
804.
conditions
KH
conditions
KD
1a + 2a
3a ;
1a[D] + 2a
KH/KD = 1.25
3a[D]
(d) Linear alkene performance
Standard
conditions
nPr
SiEt3
3s, 18%
nPr
SiEt3
+ Et3SiH
+
1o
2a
4s, 27%
(e) Proposed mechanism
radical coupling
Ph
SiEt3
Ph
Ph
1a
4.
5.
6.
'
C
Et3Si
SiEt3
B
-H vs. '-H elimination
Mn(CO)5
D
Et3SiH
2a
3a
(CO)5Mn
A
(CO)5MnH
(CO)5MnH
(CO)5Mn
A
E
E
HAT
Me
Ph
Ph
Ph
1a
7.
8.
For a review on Mn-catalyzed hydrosilylations: X. Yang, C.
Wang, Chem. Asian J. 2018, 13, 2307.
Scheme 4. Controlled experiments and proposed mechanism
Examples of Mn-catalyzed hydrosilylations: a) S. L. Pratt, R. A.
Faltynek, J. Organomet. Chem. 1983, 258, C5; b) W. Jondi, A.
Zyoud, W. Mansour, A. Q. Husseinb, H. S. Hilal, J. React. Chem.
Eng. 2016, 1, 194; c) J. S. Price, D. J. H. Emslie, J. F. Britten,
Angew. Chem. Int. Ed. 2017, 56, 6223; e) J. H. Docherty, J. Peng,
A. P. Dominey, S. P. Thomas, Nat. Chem. 2017, 9, 595; f) J. R.
Carney, B. R. Dillon, L. Campbell, S. P. Thomas, Angew. Chem.
Int. Ed. 2018, 57, 10620; g) T. K. Mukhopadhyay, M. Flores, T.
L. Groya, R. J. Trovitch, Chem. Sci. 2018, 9, 7673.
According to the results above and previous literatures9a,10, a
proposed mechanism was suggested (Scheme 4, e). Silyl radical
B is initiated by manganese radical A, and is then added to 1a to
produce intermediate C. Followed by a radical coupling with A,
the resulting intermediate D may undergo a competitive β-
hydrogen elimination to give the product 3a and a manganese
hydride species E. Followed with a hydrogen transfer from E to
another alkene as acceptor, the hydrogenation product 6a is
produced, and the catalyst is regenerated.
9.
a) X. Yang, C. Wang, Chin. J. Chem. 2018, 36, 1047; b) X. Yang,
C. Wang, Angew. Chem. Int. Ed. 2018, 57, 923.
10. For mechanism studies of Mn catalyzed silylations, radical
processes: a) L. Wang, J. M. Lear, S. M. Rafferty, S. C. Fosu, D.
A. Nagib, Science, 2018, 362, 225; b) R. J. Trovitch, Acc. Chem.
Res. 2017, 50, 2842; c) R. S. Herrick, T. R. Herrinton, H. W.
Walker, T. L. Brown, Organometallics, 1985, 4, 42.