4
Tetrahedron Letters
3. (a) Y. Han, L. Cai, Tetrahedron Lett. 38 (1997) 5423; (b) Y. Jo, J. Ju, J.
tetramethyl-1-oxylpiperidine) (6), (1-cyclopropylvinyl)benzene
Choe, K. H. Song, S. Lee, J. Org. Chem., 74 (2009) 6358.
(7), and ethene-1,1-diyldibenzene (8) as radical scavenger under
the standard conditions, GC-MS detection then indicated that the
reaction was not suppressed, and we speculated that the reaction
did not involve a radical mechanism (Scheme 3, eq 1, 2, 3). We
then used H2O18 instead of the H2O in the reaction. The product
of the corresponding molecular weight was obtained by GC-MS.
At the same time, we also carried out the study of adding D2O
instead of H2O to the reaction system, and successfully obtained
the corresponding product. This result is consistent with our
finding that water plays a very important role in the reaction
system under optimized conditions. The above two isotopic
labelling experiments show that the oxygen atom in the carbonyl
group and the hydrogen atom in the aldehyde group in the final
amide are derived from H2O. (Scheme 3, eq 4, 5) To verify the
source of C in the N-formylation group, we have performed a
related experiment (Table S4 in ESI) to find that ClCF2CO2Na
and ICF2CO2Et can obtain moderate yield instead of ethyl
bromodifluoroacetate and BrCH(CH3)CO2Et, which did not yield
the corresponding product. To verify the formation of :CF2, we
have found a method of capturing these intermediates in which
benzimidazole (9) is added to standard conditions. We verified
that 9 captures :CF2, and observed 1-(difluoromethyl)-1H-
benzo[d]imidazole (10) by GC-MS. (Scheme 3, eq 6) Therefore,
we speculate that BrCF2CO2Et functions as a C source and that
the :CF2 plays an important role in this system.
4. (a) D.-Z. Lin, J.-M. Huang, Org. Lett. 20 (2018) 2112; (b) G. L. Beutner, I.
S. Young, M. L. Davies, M. R. Hickey, H. Park, J. M. Stevens, Q. Ye, Org.
Lett. 20 (2018) 4218; (c) T. Ben Halima, J. Masson‐Makdissi, S. G.
Newman, Angew. Chem., 130 (2018) 13107; (d) L. Hu, S. Xu, Z. Zhao, Y.
Yang, Z. Peng, M. Yang, C. Wang, J. Zhao, J. Am. Chem. Soc. 138 (2016)
13135; (e) G. Brahmachari, S. Laskar, Tetrahedron Lett. 51 (2010) 2319;
(f) A. C. Shekhar, A. R. Kumar, G. Sathaiah, V. L. Paul, M. Sridhar, P. S.
Rao, Tetrahedron Lett. 50 (2009) 7099; (g) B. Das, M. Krishnaiah, P.
Balasubramanyam, B. Veeranjaneyulu, D. N. Kumar, Tetrahedron Lett.
49 (2008) 2225; (h) K. Arnold, B. Davies, D. Hérault, A. Whiting, Angew.
Chem., Int. Ed. 47 (2008) 2673; (i) M. Hosseini-Sarvari, H. Sharghi, J. Org.
Chem. 71 (2006) 6652; (j) D. R. Hill, C.-N. Hsiao, R. Kurukulasuriya, S. J.
Wittenberger, Org. Lett., 4 (2002) 111;(k) P. G. Reddy, G. K. Kumar, S.
Baskaran, Tetrahedron Lett. 41 (2000) 9149.
5. (a) A. Kumar, N. A. Espinosa‐Jalapa, G. Leitus, Y. Diskin‐Posner, L. Avram,
D. Milstein, Angew. Chem., Int. Ed. 56 (2017) 14992; (b) S. L. Zultanski, J.
Zhao, S. S. Stahl, J. Am. Chem. Soc. 138 (2016) 6416. (c) C. Gunanathan,
Y. Ben-David, D. Milstein, Science, 317 (2007) 790.
6. (a) J. Yin, J. Zhang, C. Cai, G.-J. Deng, H. Gong, Org. Lett., 21 (2018) 387;
(b) R. B. Sonawane, N. K. Rasal, S. V. Jagtap, Org. Lett. 19 (2017) 2078; (c)
S. Rasheed, D. N. Rao, A. S. Reddy, R. Shankar, P. Das, RSC Adv., 5 (2015)
10567; (d) Y. Wang, F. Wang, C. Zhang, J. Zhang, M. Li, J. Xu, Chem.
Commun. 50 (2014) 2438; (e) L. Becerra-Figueroa, A. Ojeda-Porras, D.
Gam a- nchez, J. Org. Chem. 79 (2014) 4544; (f) M. Suchy, A. A.
Elmehriki, R. H. Hudson, Org. Lett. 13 (2011) 3952.
7. (a) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu, X. Wan, Angew. Chem., Int. Ed.
51 (2012) 3231; (b) B. Xu, L. Zhou, R. J. Madix, C. M. Friend, Angew.
Chem. 122 (2010) 404.
Based on control experiments and related literature,13,14 we
have hypothesized two possible mechanisms. Path A: first
BrCF2CO2Et produces :CF2 in a mixed solvent of DMF/H2O
under heating conditions. The generation of :CF2 from
BrCF2COOEt is activated by dehalogenation. Intermediate A was
then formed by :CF2 combining with an amine. The :CF2 is self-
attacked by a lone pair of electrons from the amine, producing a
reactive intermediate B by a defluorination process. Intermediate
B is soon decomposed into C. Intermediate C emerges with
tautomerism eventually delivering products 3 and 5. Path B:
BrCF2CO2Et undergoes the amination reaction with N-
methylaniline to furnish intermediate D. Subsequently,
defluorinative hydrolysis of intermediate D affords oxoacetate E.
Intermediate E is further hydrolysed to give oxoacetic acid F.
The decarboxylation of intermediate F occurs to produce the N-
formylated final products 3 and 5.
8. (a) R. B. Sonawane, N. K. Rasal, S. V. Jagtap, Org. Lett. 19 (2017) 2078; (b)
Z. Ke, Y. Zhang, X. Cui, F. Shi, Green Chem. 18 (2016) 808; (c) Y.-D. Du,
C.-W. Tse, Z.-J. Xu, Y. Liu, C.-M. Che, Chem. Commun. 50 (2014) 12669;
(d) N. Ortega, C. Richter, F. Glorius, Org. Lett., 15 (2013) 1776.
9. (a) R. S. Chapman, R. Lawrence, J. M. Williams, S. D. Bull, Org. Lett. 19
(2017) 4908; (b) T. M. E. Dine, D. Evans, J. Rouden, J. Blanchet, Chem.
Eur. J. 22 (2016) 5894; (c) S. N. Rao, D. C. Mohan, S. Adimurthy, Green
Chem. 16 (2014) 4122; (d) S. N. Rao, D. C. Mohan, S. Adimurthy, Org.
Lett. 15 (2013) 1496; (e) R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org.
Chem. 78 (2013) 4512; (f) T. B. Nguyen, J. Sorres, M. Q. Tran, L.
Ermolenko, A. Al-Mourabit, Org. Lett. 14 (2012) 3202; (g) P. Starkov, T.
D. Sheppard, Org. Biomol. Chem. 9 (2011) 1320.
10. (a) M.-Y. Wang, N. Wang, X.-F. Liu, C. Qiao, L.-N. He, Green Chem. 20
(2018) 1564; (b) R. L. Nicholls, J. A. McManus, C. M. Rayner, J. A.
Morales-Serna, A. J. White, B. N. Nguyen, ACS Catal. 8 (2018) 3678; (c) Y.
Hu, J. Song, C. Xie, H. Wu, Z. Wang, T. Jiang, L. Wu, Y. Wang, B. Han, ACS
Sustainable Chem. Eng. 6 (2018) 11228; (d) T.-X. Zhao, G.-W. Zhai, J.
Liang, P. Li, X.-B. Hu, Y.-T. Wu, Chem. Commun. 53 (2017) 8046; (e) X.-F.
Liu, C. Qiao, X.-Y. Li, L.-N. He, Green Chem. 19 (2017) 1726; (f) X. F. Liu,
X. Y. Li, C. Qiao, H. C. Fu, L. N. He, Angew. Chem., Int. Ed. 56 (2017) 7425;
(g) S. Zhang, Q. Mei, H. Liu, H. Liu, Z. Zhang, B. Han, RSC Adv. 6 (2016)
32370; (h) H. Lv, Q. Xing, C. Yue, Z. Lei, F. Li, Chem. Commun. 52, (2016)
6545; (i) C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu, B.-L. Lin, ACS Catal. 6 (2016)
7876; (j) T. V. Nguyen, W. J. Yoo, S. Kobayashi, Angew. Chem., Int. Ed. 54
(2015) 9209.
11. (a) Y.-N. Zhao, Y.-C. Luo, Z.-Y. Wang, P.-F. Xu, Chem. Commun. 54 (2018)
3993; (b) C. Yuan, L. Zhu, C. Chen, X. Chen, Y. Yang, Y. Lan, Y. Zhao, Nat.
Commun. 9 (2018) 1189; (c) H. Liang, G.-Q. Xu, Z.-T. Feng, Z.-Y. Wang ,
P.-F. Xu, J. Org. Chem. 84 (2018) 60; (d) D. Li, T. Mao, J. Huang, Q. Zhu, J.
Org. Chem. 83 (2018) 10445; (e) W. Kong, C. Yu, H. An, Q. Song, Org.
Lett. 20 (2018) 4975; (f) W. Jin, M. Wu, Z. Xiong, G. Zhu, Chem.
Commun. 54 (2018) 7924; (g) W. Fu, Q. Song, Org. Lett. 20 (2018) 393;
(h) Z. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264; (i) F.
Ding, Y. Jiang, K. Lin L. Shi, Org. Biomol. Chem. 16 (2018) 1812.
Conclusions
In conclusion, we have developed a simple and efficient
method for the N-formylation of amines by the use of ethyl
bromodifluoroacetate. A series of amine derivatives were
subjected to the reaction system and furnished the corresponding
products in good yields. In addition, this reliable and simple
reaction protocol, without a base and under ambient coditions,
makes the present work a useful method for further research into
biological and chemical applications.
Acknowledgments
12. (a) L. Xu, Q. Zhang, Q. Xie, B. Huang, J.-J. Dai, J. Xu, H.-J. Xu, Chem.
Commun. 54 (2018) 4406; (b) W.-K. Tang, Z.-W. Xu, J. Xu, F. Tang, X.-X.
Li, J.-J. Dai, H.-J. Xu, Y.-S. Feng, Org. Lett. 21 (2018) 196; (c) W.-K. Tang,
Y.-S. Feng, Z.-W. Xu, Z.-F. Cheng, J. Xu, J.-J. Dai, H.-J. Xu, Org. Lett., 19
(2017) 5501; (d) J. Hu, T. J. Pu, Z.-W. Xu, W. Y. Xu, Y. S. Feng, Adv. Synth.
Cat. 4 (2019) 708.
We gratefully acknowledge financial support from the
National Natural Science Foundation of China (No. 21571047).
References and notes
13. X.-F. Li, X.-G. Zhang, F. Chen, X.-H. Zhang, J. Org. Chem. 83 (2018) 12815.
14. X. Ma, S. Deng, Q. Song, Org. Chem. Front. 5 (2018) 3505.
15. (a) X. Ma, Y. Zhou, Q. Song, Org. Lett. 20 (2018) 4777.; (b) X. Ma, S. Mai,
1. (a) A. E. Allen, D. W. C. MacMillan, Chem. Sci. 3 (2012) 633; (b) A. R.
Kniss, Nat. Commun. 8 (2017) 14865.
2. (a) D. Yamashiro, C. H. Li, J. Org. Chem. 38 (1973) 2594; (b) J. C. Sheehan,
D.-D. H. Yang, J. Am. Chem. Soc. 80 (1958) 1154.
Y. Zhou, G.-J. Cheng, Q. Song, Chem. Commun. 54 (2018) 8960.