M. Galica et al./Chemical Papers 67 (9) 1240–1244 (2013)
1243
Table 3. Oxidation of benzyl alcohol in the presence of regen-
in water by photocatalytic membranes incorporating de-
erated catalyst
catungstate. Advanced Synthesis & Catalysis, 345, 1119–
1
126. DOI: 10.1002/adsc.200303076.
a
Number of cycles
Conversion/mole %
Selectivity /%
Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B.,
Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J.,
Knight, D. W., & Hutchings, G. J. (2006). Solvent-free oxida-
tion of primary alcohols to aldehydes using Au-Pd/TiO2 cat-
alysts. Science, 311, 362–365. DOI: 10.1126/science.1120560.
Fey, T., Fischer, H., Bachmann, S., Albert, K., & Bolm, C.
1
2
3
87
87
86
68
64
66
a) Benzaldehyde versus benzoic acid.
(2001). Silica-supported TEMPO catalysts: Synthesis and
application in the Anelli oxidation of alcohols. The Journal of
Organic Chemistry, 66, 8154–8159. DOI: 10.1021/jo010535q.
Fornal, E., & Giannotti, C. (2007). Photocatalyzed oxidation
of cyclohexane with heterogenized decatungstate. Journal of
Photochemistry and Photobiology A: Chemistry, 188, 279–
of 2-ethylhexane-1,3-diol proceeded more smoothly af-
fording 3-(hydroxymethyl)-heptan-4-one in a 95 %
yield. In case of the hexane-2,5-diol reaction carried
out under high pressure within 15 min, 3-methyl-2-
cyclopenten-1-one was obtained in a 28 % yield and
hexane-2,5-dione in a 72 % yield. On the other hand,
the oxidation of hexane-2,5-diol under milder condi-
tions (MW) decreased the amount of the cyclic prod-
uct from 28 % to 10 % while the conversion of alcohol
was reduced to 80 %.
To conclude, a suitable method for the oxidation
of selected alcohols under microwave irradiation is de-
scribed. It was observed that the use of solvents dis-
solving the catalyst in the entire volume is desirable
because the contact surface between the catalyst and
the substrates is thereby increased. It is presented that
the most efficient reaction system is acetonitrile/water
in the presence of TBADT. The obtained results show
a significant activity of TBADT towards the selected
primary and secondary alcohols. The advantages of
this environmentally benign and safe procedure also
include a simple reaction set-up. Moreover, the use of
a microwave pressurised reactor reduces the reaction
time by half compared with the time necessary for a
conventional reactor.
286. DOI: 10.1016/j.jphotochem.2006.12.023.
Freitag, J., N u¨ chter, M., & Ondruschka, B. (2003). Oxidation of
styrene and cyclohexene under microwave conditions. Green
Chemistry, 5, 291–295. DOI: 10.1039/b212522f.
González-Arellano, C., Campelo, J. M., Macquarrie, D. J.,
Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient
microwave oxidation of alcohols using low-loaded supported
metallic iron nanoparticles. ChemSusChem, 1, 746–750. DOI:
10.1002/cssc.200800113.
Guo, Y., Hu, C., Wang, X., Wang, Y., Wang, E., Zou, Y., Ding,
H., & Feng, S. (2001). Microporous decatungstates: Synthe-
sis and photochemical behavior. Chemistry of Materials, 13,
4058–4064. DOI: 10.1021/cm010211i.
Guo, L. (2004). Quaternary ammonium decatungstate catalyst
for oxidation of alcohols. Green Chemistry, 6, 271–273. DOI:
10.1039/b400618f.
Jamwal, N., Gupta, M., & Paul, S. (2008). Hydroxyapatite-
supported palladium (0) as a highly efficient catalyst for
the Suzuki coupling and aerobic oxidation of benzyl al-
cohols in water. Green Chemistry, 10, 999–1003. DOI:
10.1039/b802135j.
Klemperer, W. G. (1990). Tetrabutylammonium isopolyoxomet-
alates. In A. P. Ginsberg (Ed.), Inorganic syntheses (Series:
Inorganic syntheses, Vol. 27, pp. 74–85). New York, NY,
USA: Wiley.
Kozhevnikov, I. V. (Ed.) (2002). Catalysts for fine chemical
synthesis: Catalysis by polyoxometalates (Series: Catalysts
for fine chemical synthesis, Vol. 2). Chichester, UK: Wiley.
Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa,
K., & Kaneda, K. (2008). Oxidant-free alcohol dehydrogena-
tion using a reusable hydrotalcite-supported silver nanopar-
ticle catalyst. Angewandte Chemie International Edition, 47,
138–141. DOI: 10.1002/anie.200703161.
Molinari, A., Maldotti, A, Bratovcic, A., & Magnacca, G.
(2013). Photocatalytic properties of sodium decatungstate
supported on sol–gel silica in the oxidation of glycerol. Catal-
ysis Today, 206, 46–52. DOI: 10.1016/j.cattod.2011.11.033.
Pope, M. T., & M u¨ ller, A. (Eds.) (1994). Polyoxometalates:
From platonic solids to anti-retroviral activity. Dordrecht,
The Netherlands: Kluwer Academic Publishers.
Protti, S., Ravelli, D., Fagnoni, M., & Albini, A. (2009). So-
lar light-driven photocatalyzed alkylations. Chemistry on the
window ledge. Chemical Communications, 2009, 7351–7353.
DOI: 10.1039/b917732a.
References
Adam, W., Alsters, P. L., Neumann, R., Saha-M ¨o ller, C. R.,
Sloboda-Rozner, D., & Zhang, R. (2002). A new highly selec-
tive method for the catalytic epoxidation of chiral allylic alco-
hols by sandwich-type polyoxometalates with hydrogen per-
oxide. Synlett, 2002, 2011–2014. DOI: 10.1055/s-2002-35570.
Adam, W., Alsters, P. L., Neumann, R., Saha-M ¨o ller, C. R.,
Seebach, D., Beck, A. K., & Zhang, R. (2003). Chiral hy-
droperoxides as oxygen source in the catalytic stereoselec-
tive epoxidation of allylic alcohols by sandwich-type poly-
oxometalates: Control of enantioselectivity through a metal-
coordinated template. The Journal of Organic Chemistry,
6
8, 8222–8231. DOI: 10.1021/jo034923z.
Angioni, S., Ravelli, D., Emma, D., Dondi, D., Fagnoni, M.,
Albini, A. (2008). Tetrabutylammonium decatungstate
chemo)selective photocatalyzed, radical C–H functionaliza-
tion in amides. Advanced Synthesis & Catalysis, 350, 2209–
214. DOI: 10.1002/adsc.200800378.
&
(
Pybus, D. H., & Sell, C. S. (1999). The chemistry of fragrances.
Cambridge, UK: The Royal Society of Chemistry.
Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., & Noyori, R.
(1996). A practical method for epoxidation of terminal olefins
with 30% hydrogen peroxide under halide-free conditions.
The Journal of Organic Chemistry, 61, 8310–8311. DOI:
10.1021/jo961287e.
2
Bogda ꢀl , D., & Lꢀ ukasiewicz, M. (2000). Microwave-assisted oxi-
dation of alcohols using aqueous hydrogen peroxide. Synlett,
2000, 143–145. DOI: 10.1055/s-2000-6440.
Bonchio, M., Carraro, M., Scorrano, G., Fontananova, E., &
Drioli, E. (2003). Heterogeneous photooxidation of alcohols
Sato, K., Aoki, M., Takagi, J., Takagi, J., Zimmermann, K., &
Noyori, R. (1999). A practical method for alcohol oxidation