2314
W. Deng et al. / Tetrahedron Letters 45 (2004) 2311–2315
Table 4 (continued)
O
Base
Yield (%)a
R2
+
I-
Entry
Aryl halide
Amide
R1
N
H
R3
O
O
R3
O
17
I
80
92
Br
H2N
(III)Cu
Ar
O
N
N
H
R1
R2
H2N
(III)Cu
Ar
O
I
O
I
CH
18
3
O
NH2
R3
O
O
O
O
I
I
CH
CH
19
20
95
82
R2
3
Ar-I
H2N
(I)Cu
R1
N
NH
Ar
O
3
Scheme 1.
N
H
a Isolated yield.
In summary, amino acids have been found to be excel-
lent ligands for Cu-catalyzed amidation reactions. The
catalyst system is general, inexpensive, safe, and envi-
ronmentally benign. Efforts to expand the utility of the
method to other types of Cu-catalyzed reactions in
combination with mechanistic studies are in progress in
our group.
Interestingly, an imide (entry 8) can also participate in
the coupling reaction, although the yield is relatively low
(yield ꢀ 55%). On the other hand, sulfonamide (entry
10) works fairly well in the amino acid-mediated cou-
pling reaction (yield ꢀ 83%). Hydrazide (entry 11) gives
a very good yield in the coupling (yield ¼ 98% with b-
alanine) and the coupling occurs nearly completely at
the amide nitrogen as demonstrated by NMR. More-
over, in the coupling of N-(2-hydroxy-ethyl)-acetamide,
the N-arylation versus O-arylation ratio is 15:1 as
revealed by GC/MS.
Acknowledgements
We thank MOST, CAS, and NSFC for the financial
support.
References and notes
Finally, using glycine as ligand we examined the cou-
pling reactions between various aryl halides and amides
(see Table 4). It is found that chlorobenzene gives a very
low yield of 26% in the coupling. Bromobenzene gives a
modest yield of 62%, which is still much lower than the
yield seen with iodobenzene (97%).
1. Reviews: (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998,
37, 2046; (b) Muci, A. R.; Buchwald, S. L. Top. Curr.
Chem. 2002, 219, 131; (c) Hartwig, J. F. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negi-
shi, E., Ed.; Wiley-Interscience: New York, 2002.
2. Recent examples: (a) Shaughnessy, K. H.; Hamann, B. C.;
Hartwig, J. F. J. Org. Chem. 1998, 63, 6546; (b) Yang, B.
H.; Buchwald, S. L. Org. Lett. 1999, 1, 35; (c)
Shakespeare, W. C. Tetrahedron Lett. 1999, 40, 2035; (d)
Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett.
1999, 40, 3543; (e) Edmondson, S. D.; Mastracchio, A.;
Parmee, E. R. Org. Lett. 2000, 2, 1109; (f) Hartwig, J. F.;
Kawatsura, M.; Hauck, S. L.; Shaughnessy, K. H.;
Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575; (g)
Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169;
(h) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (i)
Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402; (j)
Arterburn, J. B.; Rao, K. V.; Ramdas, R.; Dible, B. R.
Org. Lett. 2001, 3, 1351; (k) Yin, J.; Buchwald, S. L. J.
Am. Chem. Soc. 2002, 124, 6043; (l) Huang, X.; Anderson,
K. W.; Zim, D.; Jiang, L.; Kalpars, A.; Buchwald, S. L. J.
Am. Chem. Soc. 2003, 125, 6653.
For aryl iodides, it is found that a variety of substituents
at either ortho, meta, or para positions can be tolerated
in the amino acid-mediated amidation reaction. In
particular, electron-rich aryl iodide (e.g., entries 7–11)
works fairly well in the coupling. An aryl iodide with
ortho substituent (entries 12–14) is also not a problem
with the CuI/glycine catalyst. Compared to these Cu-
catalysis results, amidation of electron-rich or ortho-
substituted aryl halides is often difficult with the Pd
catalyst.1;2
At present the mechanism of the Cu(I) catalyzed cou-
pling reaction is not completely clear yet.15 Nonetheless,
the results from the present study are consistent with the
mechanism in which a four-coordinated Cu(III) inter-
mediate is involved (see Scheme 1).15 According to the
mechanism, the role of amino acid ligand in the reaction
is either to promote the oxidative addition of ArI to the
Cu(I) species or to stabilize the Cu(III) intermediate.
The mechanism also explains why it is not the amino
group of amino acid ligand but the amide nitrogen that
participates in the coupling, because in the Cu(III)
complex amide nitrogen is anionic (and therefore, more
reactive) whereas the NH2 group of the amino acid
ligand is neutral.
3. (a) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691; (b)
Lindley, J. Tetrahedron 1984, 40, 1433.
4. (a) Yamamoto, T.; Ehara, Y.; Kubota, M.; Yamamoto, A.
Bull. Chem. Soc. Jpn. 1980, 53, 1299; (b) Shen, R.; Porco,
J. A., Jr. Org. Lett. 2000, 2, 1333; (c) Goodbrand, H. B.;
Hu, N.-X. J. Org. Chem. 1999, 64, 670; (d) Fagan, P. J.;
Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem.
Soc. 2000, 122, 5043; (e) Klapars, A.; Antilla, J. C.;
Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7727; (f) Wolter, M.; Klapars, A.; Buchwald, S. L. Org.
Lett. 2001, 3, 3803; (g) Wolter, M.; Nordmann, G.; Job,
G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973; (h)
Crawford, K. R.; Padwa, A. Tetrahedron Lett. 2002, 43,