BECKMANN REARRANGEMENT OF KETOXIMES
1451
8
9
. Luca, L. D.; Giacomelli, G.; Porcheddu, A. Beckmann rearrangement of oximes under
very mild conditions. J. Org. Chem. 2002, 67, 6272–6274.
. Xiao, L. F.; Xia, C. G.; Chen, J. p-Toluenesulfonic acid mediated zinc chloride: Highly
effective catalyst for the Beckmann rearrangement. Tetrahedron Lett. 2007, 48, 7218–7221.
1
0. Anilkumar, R.; Chandrasekhar, S. Improved procedures for the Beckmann rearrange-
ment: The reaction of ketoxime carbonates with boron trifluoride etherate. Tetrahedron
Lett. 2000, 41, 5427–5429.
1
1
1
1. De, S. K. RuCl -catalyzed facile conversion of arylalkyl ketoximes to amides. Synth.
3
Commun. 2004, 34, 3431–3434.
2. Arisawa, M.; Yamaguchi, M. Rhodium-catalyzed Beckmann rearrangement. Org. Lett.
2001, 3, 311–312.
3. Sharghi, H.; Sarvari, M. H. One-step Beckmann rearrangement from carbonyl com-
2 3 3 3
pounds and hydroxylamine hydrochloride in Al O =CH SO H (AMA) as a new reagent.
J. Chem. Res. 2001, 446–449.
1
4. (a) Chandrasekhar, S.; Gopalaiah, K. Beckmann reaction of oximes catalysed by chloral:
Mild and neutral procedures. Tetrahedron Lett. 2003, 44, 755–756; (b) Chandrasekhar, S.;
Gopalaiah, K. Beckmann rearrangement of ketoximes on solid metaboric acid: A simple
and effective procedure. Tetrahedron Lett. 2002, 43, 2455–2457.
1
5. (a) Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. Acceleration of
synthetic organic reactions using supercritical water: Noncatalytic Beckmann and pinacol
rearrangements. J. Am. Chem. Soc. 2000, 122, 1908–1918; (b) Sato, O.; Ikushima, Y.;
Yokoyama, T. Noncatalytic Beckmann rearrangement of cyclohexanone–oxime in super-
critical water. J. Org. Chem. 1998, 63, 9100–9102; (c) Boero, M.; Ikeshoji, T.; Liew, C. C.;
Terakura, K.; Parrinello, M. Hydrogen bond–driven chemical reactions: Beckmann
rearrangement of cyclohexanone oxime into e-caprolactam in supercritical water. J.
Am. Chem. Soc. 2004, 126, 6280–6286.
16. (a) Wang, B.; Yang, L. M.; Suo, J. S. Ionic liquid–regulated sulfamic acid: Chemoselective
catalyst for the transesterification of b-ketoesters. Tetrahedron Lett. 2003, 44, 5037–5039;
(
b) Wang, B.; Yang, L. M.; Suo, J. S. Solvent-free tetrahydropyranylation of alcohols with
sulfamic acid as reusable catalyst. Synth. Commun. 2003, 33, 3929–3934.
7. Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Sulfamic acid as a cost-effective
and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce
amides from ketoximes without waste. Tetrahedron Lett. 2004, 45, 3369–3372.
8. (a) Du, G.; Zhang, Q. The Beckmann rearrangement of acetophenonoxime under
ultrasonic irradiation. J. Hebei Univ. (Nat. Sci. Ed.) 1997, 38–40; (b) Zhou, H.; Huang,
W. Beckmann rearrangement of benzophenoneoxime under ultrasonic irradiation. J.
Anqing Teach. Coll. (Nat. Sci.) 2002, 8, 42–45.
1
1
1
9. Sardarian, A. R.; Shahsavari-Fard, Z.; Shahsavari, H. R.; Ebrahimi, Z. Efficient
Beckmann rearrangement and dehydration of oximes via phosphonate intermediates.
Tetrahedron Lett. 2007, 48, 2639–2643.
2
2
2
2
0. Moghaddam, F. M.; Rad, A. A. R.; Hassan, Z. B. Solid-supported microwave-assisted
Beckmann rearrangement of ketoximes in dry media. Synth. Commun. 2004, 34, 2071–2075.
1. K u¨ llertz, G.; Fischer, G.; Barth, A. Sekuedare D-isotopieeffekte bei der hydrolyse von
p-nitroacetanilid. Tetrahedron, 1976, 32, 759–761.
2. Newman, M. S.; Hung, W. M. An improved aromatization of a-tetralone oximes to N-
(
1-naphthyl)acetamides. J. Org. Chem. 1973, 38, 4073–4704.
3. (a) Banfield, J. E. Heterocyclic derivatives of guanidine, part II: Some derived products.
J. Chem. Soc. 1961, 2098–2106; (b) Nicanor, G.; Marcial, M. M.; Sebastian, R. M.;
Adelina, V. Dimethoxyethane as an alternative solvent for schmidt reactions: Preparation
of homochiral N-(5-oxazolyl)oxazolidinones from N-acetoacetyl derivatives of oxazolidi-
nones. Tetrahedron 1996, 52, 1609–1616.