Journal of the American Chemical Society
Page 4 of 5
In summary, we have designed, synthesized, and evaluated S-
substituted-thioisothioureas as RSSH precursors. These
precursors show efficient and controllable release of RSSH under
physiological conditions. We also demonstrated that RSSH
generation can be tuned by structural modifications. Importantly,
these precursors are found to be stable for several months on the
(10) Cuevasanta, E.; Möller, M. N.; Alvarez, B., Arch. Biochem.
Biophys. 2017, 617, 9-25.
(11) Mishanina, T. V.; Libiad, M.; Banerjee, R., Nat. Chem. Biol.
2015, 11, 457.
(12) Álvarez, L.; Bianco, C. L.; Toscano, J. P.; Lin, J.; Akaike,
T.; Fukuto, J. M., Antioxid. Redox Signal. 2017, 27, 622-633.
(13) Kasamatsu, S.; Nishimura, A.; Morita, M.; Matsunaga, T.;
Abdul Hamid, H.; Akaike, T., Molecules 2016, 21, 1721.
(14) Chauvin, J. R.; Griesser, M.; Pratt, D. A., J. Am. Chem. Soc.
2017, 139, 6484-6493.
(15) Bianco, C. L.; Chavez, T. A.; Sosa, V.; Saund, S. S.;
Nguyen, Q. N. N.; Tantillo, D. J.; Ichimura, A. S.; Toscano, J. P.;
Fukuto, J. M., Free Radic. Biol. Med. 2016, 101, 20-31.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
bench-top in the solid state and for a few weeks in D O at room
temperature (SI, Figure S63). Given the significance of RSSH in
redox biology, we hope that these S-substituted thioisothioureas
will find use as research tools to advance our understanding of
RSSH chemical biology.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
ASSOCIATED CONTENT
(
16) Bailey, T. S.; Zakharov, L. N.; Pluth, M. D., J. Am. Chem.
Supporting Information
Soc. 2014, 136, 10573-10576.
(17) Bailey, T. S.; Pluth, M. D., Free Radic. Biol. Med. 2015, 89,
662-667.
The Supporting Information is available free of charge on the
ACS Publications website at DOI:
(
2
(
18) Isabelle, A.; Erwan, G., ChemBioChem 2014, 15, 2361-
364.
19) Yadav, P. K.; Martinov, M.; Vitvitsky, V.; Seravalli, J.;
Experimental details and supplementary figures, S1−S84 (PDF)
AUTHOR INFORMATION
Corresponding Author
Wedmann, R.; Filipovic, M. R.; Banerjee, R., J. Am. Chem. Soc.
2016, 138, 289-299.
(20) Cuevasanta, E.; Lange, M.; Bonanata, J.; Coitiño, E. L.;
Ferrer-Sueta, G.; Filipovic, M. R.; Alvarez, B., J. Biol. Chem.
2015, 290, 26866-26880.
Notes
The authors declare no competing financial interests.
(21) Rao, G. S.; Gorin, G., J. Org. Chem. 1959, 24, 749-753.
(
22) Tsurugi, J.; Kawamura, S.; Horii, T., J. Org. Chem. 1971,
36, 3677-3680.
23) Zheng, Y.; Yu, B.; Li, Z.; Yuan, Z.; Organ, C. L.; Trivedi, R.
ACKNOWLEDGMENT
(
We gratefully acknowledge the National Science Foundation
K.; Wang, S.; Lefer, D. J.; Wang, B., Angew. Chem., Int. Ed.
2017, 56, 11749-11753.
(24) Kang, J.; Xu, S.; Radford, M. N.; Zhang, W.; Kelly, S. S.;
Day, J. J.; Xian, M., Angew. Chem., Int. Ed. 2018, 130, 5995-
(
CHE-1566065) for generous support for this research. We also
thank Dr. Ananya Mujumdar for assistance with NMR kinetics
experiments and Dr. I. Phil Mortimer for assistance with
compound identification and characterization by mass
spectrometry.
5
(
999.
25) Powell, C. R.; Dillon, K. M.; Wang, Y.; Carrazzone, R. J.;
Matson, J. B., Angew. Chem., Int. Ed. 2018, 57, 6324-6328.
26) Park, C. M.; Johnson, B. A.; Duan, J.; Park, J. J.; Day, J. J.;
REFERENCES
(
Gang, D.; Qian, W. J.; Xian, M., Org. Lett. 2016, 18, 904-907.
(27) Cossar, B. C.; Fournier, J. O.; Fields, D. L.; Reynolds, D. D.,
J. Org. Chem. 1962, 27, 93-95.
(28) Rad, M. N. S.; Maghsoudi, S., RSC Adv. 2016, 6, 70335-
70342.
(
1) Hosoki, R.; Matsuki, N.; Kimura, H., Biochem. Biophys. Res.
Commun. 1997, 237, 527-531.
(2) Yin, J.; Tu, C.; Zhao, J.; Ou, D.; Chen, G.; Liu, Y.; Xiao, X.,
Brain Res. 2013, 1491, 188-196.
(
2
(
3) Nicholson, C. K.; Calvert, J. W., Pharmacol. Res. 2010, 62,
89-297.
4) Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.;
(29) Lu, G. P.; Cai, C., RSC Adv. 2014, 4, 59990-59996.
(
30) Killian, D. M.; Hermeling, S.; Chikhale, P. J., Drug Deliv.
2007, 14, 25-31.
Gazi, S. K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H.,
Sci. Signal. 2009, 2, 72.
(5) Paul, B. D.; Snyder, S. H., Nat. Rev. Mol. Cell Biol. 2012, 13,
(31) Sirakawa, K.; Aki, O.; Tsujikawa, T.; Tsuda, T., Chem.
Pharm. Bull. 1970, 18, 235-242.
(32) Pan, J.; Carroll, K. S., ACS Chem. Biol. 2013, 8, 1110-1116.
(33) Pan, J.; Carroll, K. S., Org. Lett. 2015, 17, 6014-6017.
(34) Reisz, J. A.; Bechtold, E.; King, S. B.; Poole, L. B.; Furdui,
C. M., FEBS J. 2013, 280, 6150-6161.
(35) Mandal, B.; Basu, B., RSC Adv. 2014, 4, 13854-13881.
(36) Bogdándi, V.; Ida, T.; Sutton, T. R.; Bianco, C.; Ditrói, T.;
Koster, G.; Henthorn, H. A.; Minnion, M.; Toscano, J. P.; Vliet,
A. v. d.; Pluth, M. D.; Feelisch, M.; Fukuto, J. M.; Akaike, T.;
Nagy, P., Br. J. Pharmacol. 2018, DOI: 10.1111/bph.14394.
(37) Matsui, S.; Aida, H., J. Chem. Soc., Perkin Trans. 2. 1978,
1277-1280.
4
99.
(
6) Ida, T.; Sawa, T.; Ihara, H.; Tsuchiya, Y.; Watanabe, Y.;
Kumagai, Y.; Suematsu, M.; Motohashi, H.; Fujii, S.; Matsunaga,
T.; Yamamoto, M.; Ono, K.; Devarie-Baez, N. O.; Xian, M.;
Fukuto, J. M.; Akaike, T., Proc. Natl. Acad. Sci. U.S.A. 2014,
1
11, 7606-7611.
(7) Ono, K.; Akaike, T.; Sawa, T.; Kumagai, Y.; Wink, D. A.;
Tantillo, D. J.; Hobbs, A. J.; Nagy, P.; Xian, M.; Lin, J.; Fukuto,
J. M., Free Radic. Biol. Med. 2014, 77, 82-94.
(
8) Bianco, C. L.; Akaike, T.; Ida, T.; Nagy, P.; Bogdandi, V.;
Toscano, J. P.; Kumagai, Y.; Henderson, C. F.; Goddu, R. N.; Lin,
J.; Fukuto, J. M., Br. J. Pharmacol. 2018, DOI:
(38) Mandapati, U.; Mandapati, P.; Pinapati, S.; Tamminana, R.;
Rudraraju, R., Synth. Commun. 2018, 48, 500-510.
1
0.1111/bph.14372.
(9) Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R.,
Chem. Rev. 2018, 118, 1253-1337.
ACS Paragon Plus Environment