RSC Advances
Paper
addition of base, 5 equivalents of a new boronic acid, tetrakis-
palladiumtriphenylphosphine (6 mol%) and degassing with
nitrogen, the Suzuki–Miyaura coupling products 4a–c were
generated in 20–67% yields (over 3 steps) upon microwave
heating for 30 min (Scheme 6). 4a was formed in diminished
20% yield using 3 equivalents of boronic acid and base with
4 mol% of Pd-catalyst loading. However, by increasing to 5
equivalents of boronic acid and base with 6 mol% of catalyst
loading (2 mol% per coupling), the yields increased to 65% and
67% for 4b and 4c, respectively. Over 3 steps this is close to 90%
average yield per step (unoptimized), thus, it constitutes an
impressive one-pot procedure for generating such highly
substituted phenols. Furthermore, 4b is not symmetrical and
demonstrates that this methodology can be applied to generate
relatively complex phenols.
2009, 48, 918; (c) J. W. Han, J. Jung, Y.-M. Lee, W. Nam and
S. Fukuzumi, Chem. Sci., 2017, 8, 7119; (d) G. Shan,
X. Yang, L. Ma and Y. Rao, Angew. Chem., Int. Ed., 2012, 51,
13070; (e) A. Tlili, N. Xia, F. Monnier and M. Taillefer,
Angew. Chem., Int. Ed., 2009, 48, 8725; (f) L. Yang,
Z. Huang, G. Li, W. Zhang, R. Cao, C. Wang, J. Xiao and
D. Xue, Angew. Chem., Int. Ed., 2018, 57, 1968.
3 Z. Rappoport, The Chemistry of Phenols, Wiley-VCH,
Weinheim, 2003.
4 J. H. P. Tyman, Synthetic and Natural Phenols, Elsevier, New
York, 1996.
5 W. Wang, N. Li, H. Tang and Y. Ma X. Yang, Mol. Catal., 2018,
453, 113–120.
6 V. M. Zakoshansky, Pet. Chem., 2007, 47, 273–284.
7 J. P. Lambooy, J. Am. Chem. Soc., 1950, 72, 5327–5328.
8 (a) J. Zheng, S. Lin, X. Zhu, B. Jiang, Z. Yang and Z. Pan,
Chem. Commun., 2012, 48, 6235; (b) L. Wang, W. Zhang,
D. Sheng Su, X. Meng and F.-S. Xiao, Chem. Commun.,
2012, 48, 5476; (c) T. Begum, A. Gogoi, P. K. Gogoi and
U. Bora, Tetrahedron Lett., 2015, 56, 95; (d)
A. D. Chowdhury, S. M. Mobin, S. Mukherjee, S. Bhaduri
and G. K. Lahiri, Eur. J. Inorg. Chem., 2011, 2011, 3232; (e)
H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem.–Eur. J.,
2011, 17, 5652; (f) J. Xu, X. Wang, C. Shao, D. Su, G. Cheng
and Y. Hu, Org. Lett., 2010, 12, 1964; (g) K. Inamoto,
K. Nozawa, M. Yonemoto and Y. Kondo, Chem. Commun.,
2011, 47, 11775; (h) N. Gogoi, P. K. Gogoi, G. Borah and
U. Bora, Tetrahedron Lett., 2016, 57, 4050; (i) H. Yi and
A. Lei, Chem.–Eur. J., 2017, 23, 10023–10027.
9 (a) Y.-Q. Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis,
K. A. Jørgensen and W.-J. Xiao, Angew. Chem., Int. Ed.,
2012, 51, 784; (b) T. Toyao, N. Ueno, K. Miyahara,
Y. Matsui, T.-H. Kim, Y. Horiuchi, H. Ikeda and
M. Matsuoka, Chem. Commun., 2015, 51, 16103; (c) X. Yu
and S. M. Cohen, Chem. Commun., 2015, 51, 9880; (d)
J. A. Johnson, J. Luo, X. Zhang, Y.-S. Chen, M. D. Morton,
Conclusions
In summary, we have developed a very rapid and green
synthesis of phenols from boronic acids via ipso-hydroxylation
mediated by hydrogen peroxide in ethanol at ambient condi-
tions. The method appears quite general and affords very good
to excellent yields across a range of sterically and electronically
diverse substituent patterns. By addition of hydrogen bromide
to the reaction mixture, diverse bromophenols are available
through a tandem hydroxylation/bromination process. The
chemistry has been applied to develop a synthesis of highly
substituted arylphenols via
a one-pot ipso-hydroxylation/
bromination/Suzuki–Miyaura coupling sequence. The results
should be of broad interest to the chemical community and
represent major advances in the synthesis of complex phenols.
Conflicts of interest
There are no conicts to declare.
´
E. Echeverrıa, F. E. Torres and J. Zhang, ACS Catal., 2015,
Acknowledgements
5, 5283; (e) A. K. Simlandy, B. Bhattacharyya, A. Pandey
and S. Mukherjee, ACS Catal., 2018, 8, 5206; (f) H.-P. Liang,
Q. Chen and B.-H. Han, ACS Catal., 2018, 8, 5313; (g)
S. P. Pitre, C. D. McTiernan, H. Ismaili and J. C. Scaiano, J.
Am. Chem. Soc., 2013, 135, 13286; (h) H.-Y. Xie, L.-S. Han,
S. Huang, X. Lei, Y. Cheng, W. Zhao, H. Sun, X. Wen and
Q.-L. Xu, J. Org. Chem., 2017, 82, 5236; (i) I. Kumar,
R. Sharma, R. Kumar, R. Kumar and U. Sharma, Adv.
Synth. Catal., 2018, 360, 2013; (j) I. K. Sideri, E. Voutyritsa
and C. G. Kokotos, Synlett, 2018, 29, 1324–1328.
The authors acknowledge generous funding for this project by
the Research Council of Norway (Grant no. 275043 CasCat) and
the Department of Chemistry at UiT The Arctic University of
Norway.
References
1 (a) J. H. P. Tyman, Synthetic and Natural Phenols, Elsevier,
New York, 1996; (b) Z. Rappoport, The Chemistry of Phenols,
Wiley-VCH, Weinheim, 2003; (c) S. Quideau, D. Deffieux, 10 (a) A. Gogoi and U. Bora, Tetrahedron Lett., 2013, 54, 1821; (b)
C. Douat-Casassus and L. Pouysegu, Angew. Chem., Int. Ed.,
2011, 50, 586–621; (d) Y. Ji, P. Li, X. Zhang and L. Wang,
Org. Biomol. Chem., 2013, 11, 4095–4101; (e) R. W. Owen,
A. Giacosa, W. E. Hull, R. Haubner, B. Spiegel-hader and
H. Bartsch, Eur. J. Cancer, 2000, 36, 1235–1247.
S. Gupta, P. Chaudhary, V. Srivastava and J. Kandasamy,
Tetrahedron Lett., 2016, 57, 2506; (c) P. Shreemoyee,
M. Abhijit and R. M. Harunar, Appl. Catal., A, 2018, 562,
58–66; (d) E. Saikia, S. Bora and B. Chetia, RSC Adv., 2015,
5, 102723; (e) J. Simon, S. Salzbrunn, G. K. S. Prakash,
N. A. Petasis and G. A. Olah, J. Org. Chem., 2001, 66, 633–
634; (f) G. K. S. Prakash, S. Chacko, C. Panja,
T. E. Thomas, L. Gurung, G. Rasul, T. Mathew and
G. A. Olah, Adv. Synth. Catal., 2009, 351, 1567–1574.
2 (a) K. W. Anderson, T. Ikawa, R. E. Tundel and
S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 10694; (b)
¨
T. Schulz, C. Torborg, B. Schaffner, J. Huang, A. Zapf,
¨
R. Kadyrov, A. Borner and M. Beller, Angew. Chem., Int. Ed.,
40586 | RSC Adv., 2020, 10, 40582–40587
This journal is © The Royal Society of Chemistry 2020