Organometallics
Article
25 °C, ppm): 2.16 (s, 24H, o-Me), 2.22 (s, 12H, p-Me), 2.37 (s, 6H,
OMe), 6.79 (s, 8H, C6H2), 6.94 (d, JHH = 7.5 Hz, 4H, C6H3), 7.19 (t,
2H, C6H3). 13C{1H} NMR (151 MHz, C6D6, 25 °C, ppm): 21.20 (p-
Me), 22.03 (o-Me), 51.81 (OMe), 128.95, 129.32, 136.16, 136.18,
140.79, 147.91, 178.24. IR (cm−1): 2890 (s), 2700 (w), 1590 (w),
1440 (s), 1360 (s), 1240 (m), 1100 (br), 830 (w), 780 (m), 700 (m),
360 (w). λmax (nm, ε): 337 (1600).
Computational Details. All calculations were performed with
Gaussian09.32 The structures of the studied systems were optimized
using the PBE1PBE hybrid exchange−correlation functional33 in
conjunction with the def-TZVP basis sets.34 For tin, a def2-TZVP basis
with an effective core potential (ECP) was used to treat scalar
relativistic effects.35 Dispersion interactions were modeled by applying
Grimme’s empirical dispersion correction with Becke−Johnson
damping (D3BJ).36 The choice of a particular functional−basis set
combination was motivated by our recent theoretical−experimental
studies of the chemistry of metallylenes as well as computational
efficiency.2a,8,14 The correction for dispersion effects was considered
crucial in order to obtain accurate energetics for systems employing
bulky terphenyl substituents.
P. P. J. Am. Chem. Soc. 2000, 122, 3524−3525. (c) Peng, Y.; Fischer, R.
C.; Merrill, W. A.; Fischer, J.; Pu, L.; Ellis, B. D.; Fettinger, J. C.;
Herber, R. H.; Power, P. P. Chem. Sci. 2010, 1, 461−468.
(5) Wang, X.; Zhu, Z.; Peng, Y.; Lei, H.; Fettinger, J. C.; Power, P. P.
J. Am. Chem. Soc. 2009, 131, 6912−6913.
(6) (a) Peng, Y.; Guo, J.-D.; Ellis, B. D.; Zhu, Z.; Fettinger, J. C.;
Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2009, 131, 16272−16282.
(b) Peng, Y.; Ellis, B. D.; Wang, X.; Power, P. P. J. Am. Chem. Soc.
2008, 130, 12268−12269.
(7) (a) Wang, W.; Inoue, S.; Yao, S.; Driess, M. Organometallics
2011, 30, 6490−6494. (b) Jana, A.; Roesky, H. W.; Schulzke, C.;
Samuel, P. P. J. Am. Chem. Soc. 2009, 131, 4600−4601. (c) Jana, A.;
Objartel, I.; Roesky, H. W.; Stalke, D. Inorg. Chem. 2009, 48, 798−810.
(8) Lips, F.; Fettinger, J. C.; Mansikkamaki, A.; Tuononen, H. M.;
̈
Power, P. P. J. Am. Chem. Soc. 2013, 136, 634−637.
(9) Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem., Int. Ed.
2007, 46, 4511−4513.
(10) Inomata, K.; Watanabe, T.; Miyazaki, Y.; Tobita, H. J. Am.
Chem. Soc. 2015, 137, 11935−11937.
(11) Protchenko, A. V.; Blake, M. P.; Schwarz, A. D.; Jones, C.;
Mountford, P.; Aldridge, S. Organometallics 2015, 34, 2126−2129.
(12) Power, P. P. Acc. Chem. Res. 2011, 44, 627−637.
Calculations were performed only for the reactions of heavier
tetrylenes with water. Model compounds based on the ArMe ligand
4
(ArMe = C6H3-2,6-{C6H3-2,6-(CH3)2}2) were used to reduce the
4
(13) Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P.
Organometallics 1997, 16, 1920−1925.
computational cost. The nature of stationary points found (minimum
or transition state) was assessed with calculation of full Hessian
matrices using analytic or numerical gradients.
(14) (a) Brown, Z. D.; Vasko, P.; Erickson, J. D.; Fettinger, J. C.;
Tuononen, H. M.; Power, P. P. J. Am. Chem. Soc. 2013, 135, 6257−
6261. (b) Brown, Z. D.; Vasko, P.; Fettinger, J. C.; Tuononen, H. M.;
Power, P. P. J. Am. Chem. Soc. 2012, 134, 4045−4048.
ASSOCIATED CONTENT
* Supporting Information
■
S
(15) Brown, Z. D.; Guo, J. D.; Nagase, S.; Power, P. P.
Organometallics 2012, 31, 3768−3772.
The Supporting Information is available free of charge on the
(16) Brown, Z. D.; Erickson, J. D.; Fettinger, J. C.; Power, P. P.
Organometallics 2013, 32, 617−622.
(17) Erickson, J. D.; Fettinger, J. C.; Power, P. P. Inorg. Chem. 2015,
54, 1940−1948.
Synthetic details of deuterium analogues 1′ and 3′ and
additional spectroscopic (NMR, IR, and UV/vis) and
Optimized structures (XYZ)
Crystallographic information files for 1−4 (CIF)
(18) For some recent examples, see: (a) Billone, P. S.; Beleznay, K.;
Harrington, C. R.; Huck, L. A.; Leigh, W. J. J. Am. Chem. Soc. 2011,
133, 10523−10534. (b) Becerra, R.; Cannady, J. P.; Walsh, R. J. Phys.
Chem. A 2011, 115, 4231−4230. (c) Leigh, W. J.; Kostina, S. S.;
Bhattacharya, A.; Moiseev, A. G. Organometallics 2010, 29, 662−670.
(d) Leigh, W. J.; Lollmahomed, F.; Harrington, C. R.; McDonald, J. M.
Organometallics 2006, 25, 5424−5434. (e) Alexander, U. N.; King, K.
D.; Lawrance, W. D. Phys. Chem. Chem. Phys. 2003, 5, 1557−1561.
(f) Becerra, R.; Cannady, J. P.; Walsh, R. J. Phys. Chem. A 2003, 107,
11049−11056. (g) Alexander, U. N.; King, K. D.; Lawrance, W. D. J.
Phys. Chem. A 2002, 106, 973−981. (h) Heaven, M. W.; Metha, G. F.;
Buntine, M. A. Aust. J. Chem. 2001, 54, 185−192. (i) Heaven, M. W.;
Metha, G. F.; Buntine, M. A. J. Phys. Chem. A 2001, 105, 1185−1196.
(j) Duffy, I. R.; Leigh, W. J. Organometallics 2015, 34, 5029−5044.
(19) Lappert, M. F.; Miles, S. J.; Atwood, J. L.; Zaworotko, M. J.;
Carty, A. J. J. Organomet. Chem. 1981, 212, C4−C6.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the U.S. Department of Energy (DE-FG02-
07ER46475; P.P.P.) and the Academy of Finland (136929,
253907, and 272900; H.M.T.) for funding. P.V. thanks the
Fulbright Center for a personal scholarship.
(20) Schager, F.; Goddard, R.; Seevogel, K.; Porschke, K.-R.
̈
Organometallics 1998, 17, 1546−1551.
(21) Sweeder, R. D.; Miller, K. A.; Edwards, F. A.; Wang, J.; Banaszak
Holl, M. M.; Kampf, J. W. Organometallics 2003, 22, 5054−5062.
(22) Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. Chem.
Sci. 2015, 6, 7249−7257.
REFERENCES
■
(23) Pu, L.; Hardman, N. J.; Power, P. P. Organometallics 2001, 20,
5105−5109.
(24) Li, L.; Fukawa, T.; Matsuo, T.; Hashizume, D.; Fueno, H.;
Tanaka, K.; Tamao, K. Nat. Chem. 2012, 4, 361−365.
(25) Niemeyer, M.; Power, P. P. Organometallics 1997, 16, 3258−
3250.
(26) (a) Summerscales, O. T.; Olmstead, M. M.; Power, P. P.
Organometallics 2011, 30, 3468−3471. (b) Spikes, G. H.; Peng, Y.;
Fettinger, J. C.; Steiner, J.; Power, P. P. Chem. Commun. 2005, 6041−
6043.
(27) Waterman, R. Organometallics 2013, 32, 7249−7263.
(28) Kostina, S. S.; Singh, T.; Leigh, W. J. J. Phys. Org. Chem. 2011,
24, 937−946.
(1) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109,
3479−3511.
(2) (a) Protchenko, A. V.; Birjkumar, K. H.; Dange, D.; Schwarz, A.
D.; Vidovic, D.; Jones, C.; Kaltsoyannis, N.; Mountford, P.; Aldridge,
S. J. Am. Chem. Soc. 2012, 134, 6500−6503. (b) Rekken, B. D.; Brown,
T. M.; Fettinger, J. C.; Tuononen, H. M.; Power, P. P. J. Am. Chem.
Soc. 2012, 134, 6504−6507.
(3) (a) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.;
Rivard, E. J. Am. Chem. Soc. 2011, 133, 777−779. (b) Thimer, K. C.;
Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem.
Commun. 2009, 7119−7121.
(4) (a) Li, J.; Schenk, C.; Goedecke, C.; Frenking, G.; Jones, C. J. Am.
Chem. Soc. 2011, 133, 18622−18625. (b) Pu, L.; Twamley, B.; Power,
F
Organometallics XXXX, XXX, XXX−XXX