4
A. C. VETTER ET AL.
1
1
Scheme 2. Bold/red/blue: Mechanistic hypothesis illustrating competing pathways: axial attack of R MgCl at P (red) leading to QPS and attack of R MgCl at Cl
blue) to give phosphine. Grey: Plausible mechanistic pathways (for the tetracoordinate ionic form).
(
Phenyltributylphosphonium chloride (5f) was prepared in
[8] Henderson, W. A.; Buckler, S. A. The Nucleophilicity of
Phosphines. J. Am. Chem. Soc. 1960, 82, 5794–5800.
[9] Methotand, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346,
1035–1050.
10] Honaker, M.; Hovland, J.; Salvatore, R. N. The Synthesis of
Tertiary and Secondary Phosphines and Their Applications in
Organic Synthesis. COS 2007, 4, 31–45.
11] Tappe, F.; Trepohl, V.; Oestreich, M. Transition-Metal-
Catalyzed C-P Cross-Coupling Reactions. Synthesis 2010, 2010,
3037–3062.
a similar fashion from 3 and PhMgCl: transparent crystalline
+
sheets (yield 95%): MP 138–140 °C; HRMS (ES ): calculated
+
for C H P = 279.2242, found 279.2247.
1
8
32
[
Funding
[
This work was supported by Science Foundation Ireland through the
SFI-funded Synthesis & Solid State Pharmaceutical Centre 12/RC/2275
Grant to D. G. G. We also thank Dr Kamalraj Rajendran for prelimin- [12] The commercial sources offer this salt at extortionate prices,
ary studies.
e.g. 5.68 €/mmol.
[
13] Cattelan, L.; Noè, M.; Demitri, N.; Selva, M.; Perosa, A.
Methyltriphenylphosphonium Methylcarbonate, An All-In-One
Wittig Vinylation Reagent. ChemSusChem 2015, 8, 3963–3966.
14] Engel, R. Synthesis of Carbon-Phosphorus Bonds; CRC Press:
Boca Raton, 1988.
15] Vetter, A. C.; Nikitin, K.; Gilheany, D. G. Long Sought
Synthesis of Quaternary Phosphonium Salts from Phosphine
Oxides: inverse Reactivity Approach. Chem. Commun. 2018, 54,
5843–5846.
References
[
[
[1] Fraser, K. J.; MacFarlane, D. R. Phosphonium-Based Ionic
Liquids: An Overview. Aust. J. Chem. 2009, 62, 309–321.
[2] (a) Enders, D.; Nguyen, T. V. Org. Biomol. Chem. 2012, 10,
5327–5331. (b) Golandaj, A.; Ahmad, A.; Ramjugernath, D.
Phosphonium Salts in Asymmetric Catalysis: A Journey in a
Decade's Extensive Research Work. Adv. Synth. Catal. 2017,
3
59, 3676–3706.
[16] Grignard, V.; Savard, J. Compt. Rend 1931, 192, 592–595.
B. K. CCLV.—the Alleged Existence
[
[
3] Werner, T. Phosphonium Salt Organocatalysis. Adv. Synth. [17] Blount,
of
Catal. 2009, 351, 1469–1481.
4] Byrne, P. A.; Gilheany, D. G. The Modern Interpretation of the
Triphenyldialkylpentaphosphines. J. Chem. Soc. 1931, 0,
1891–1894.
Wittig Reaction Mechanism. Chem. Soc. Rev. 2013, 42, [18] Denney, D. B.; Gross, F. J. Reaction of Triphenylphosphine
6
670–6696.
Dihalides with Grignard and Organolithium Reagents. J. Org.
Chem. 1967, 32, 3710–3711.
19] (a) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield,
[
5] (a) Gosney, I.; Rowley, A. G. Organophosphorus Reagents in
Organic Synthesis, Cadogan, J. I. G. Ed.; Academic Press:
London, 1979; Ch. 2, pp. 17–153. (b) Johnson, A. W. Ylides
and Imines of Phosphorus; Wiley: New York, 1993; Ch. 8, pp.
[
J. M.; Thompson, G. M. J. Chem. Soc., Dalton Trans. 1997,
4
823–4827. (b) Godfrey, S. M.; McAuliffe, C. A.; Mushtaq, I.;
Pritchard, R. G.; Sheffield, J. M. J. Chem. Soc., Dalton Trans.
998, 3815–3818. (c) Godfrey, S. M.; McAuliffe, C. A.;
Pritchard, R. G.; Sheffield, J. M. Chem. Commun. 1996,
521–2522.
221–275.
[
6] O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter,
A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Recycling
the Waste: The Development of a Catalytic Wittig Reaction.
Angew. Chem. Int. Ed. 2009, 48, 6836–6839.
7] Dunn, P. J. The Importance of Green Chemistry in Process
Research and Development. J. Chem. Soc. Rev. 2012, 41,
1
2
[
20] Jennings, E. V.; Nikitin, K.; Ortin, Y.; Gilheany, D. G.
Degenerate Nucleophilic Substitution in Phosphonium Salts. J.
Am. Chem. Soc. 2014, 136, 16217–16226.
[
1
452–1461.