FULL PAPER
[15] E. V. Giger, B. Castagner, J.-C. Leroux, J. Controlled Release
2013, 167, 175–188.
still remained close to these partially occupied water molecules,
which points to a very complicated disorder. Therefore, all solvent-
related maxima were squeezed by using PLATON.[47] The squeezed
electronic intensity (2.25H2O) corresponds well to previous find-
ings. Selected crystallographic parameters for the reported struc-
tures are listed in Table 5.
[16] a) G. A. Rodan, H. A. Fleisch, J. Clin. Invest. 1996, 97, 2692–
2696; b) H. Fleisch, Endocr. Rev. 1998, 19, 80–100.
[17] S. P. Luckman, F. P. Coxon, F. H. Ebetino, R. G. G. Russell,
M. J. Rogers, J. Bone Miner. Res. 1998, 13, 1668–1678.
[18] T. David, P. Krecková, J. Kotek, V. Kubícek, I. Lukes, Heteroat.
ˇ ˇ
ˇ
ˇ
CCDC-983603 {for [Ca(H2L2-O,OЈ)(HL2-O,OЈ)]Cl}, -983601 {for
[Cu(HL3-O,OЈ)2(H2O)]·5H2O} and -983602 {for [Cu(H0.5L3-
O,OЈ)(NO3)0.5]·2.25H2O} contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Chem. 2012, 23, 195–201.
[19] a) S. Gouault-Bironneau, S. Deprele, A. Sutor, J.-L. Montch-
amp, Org. Lett. 2005, 7, 5909–5912; b) M. I. Antczak, J.-L.
Montchamp, Tetrahedron Lett. 2008, 49, 5909–5913.
[20] B. Kaboudin, F. Saadati, T. Yokomatsu, Synlett 2010, 1837–
1840.
[21] M. Bochno, Ł. Berlicki, Tetrahedron Lett. 2014, 55, 219–22.
[22]
a) F. Gaizer, G. Haegele, S. Goudetsidis, H. Papadopoulos, Z.
Naturforsch. B 1990, 45, 323–328; b) L. P. Loginova, I. V. Le-
vin, A. G. Matveeva, S. A. Pisareva, E. E. Nifantev, Russ.
Supporting Information (see footnote on the first page of this arti-
cle): Coordination polymer motif in the crystal structure of
[Ca(H2L2-O,OЈ)(HL2-O,OЈ)]Cl; geometric parameters of phos-
phinate functions in the crystal structure of [Ca(H2L2-O,OЈ)(HL2-
O,OЈ)]Cl; time course of decomposition of H2L1 and H2L2 in acidic
solution; 31P and 1H NMR titrations of H2L1and H2L2; determined
equilibrium constants; distribution diagrams of the studied metal–
ligand systems; geometry of the Ca2+ coordination sphere of
[Ca(H2L2-O,OЈ)(HL2-O,OЈ)]Cl; structure of the hydrazide isolated
as a side-product of the synthesis of H4L4; and colour figures of
the solid-state structures of the complexes.
ˇ
Chem. Bull. 2004, 53, 2000–2007.
[23]
[24]
[25]
[26]
T. David, S. Procházková, J. Havlícˇková, J. Kotek, V. Kubícˇek,
P. Hermann, I. Lukesˇ, Dalton Trans. 2013, 42, 2414–2422.
A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Liv-
antsova, Russ. J. Gen. Chem. 2010, 80, 1889–1890.
K. Issleib, W. Moegelin, A. Balszuweit, Z. Chem. 1985, 25,
370–371.
a) E. K. Baylis, C. D. Campbell, J. G. Dingwall, J. Chem. Soc.
Perkin Trans. 1 1984, 2845–2853; b) J. Rohovec, I. Lukesˇ, P.
Vojtísˇek, I. Císarˇová, P. Hermann, J. Chem. Soc., Dalton Trans.
1996, 2685–2691.
J. Kehler, B. Ebert, O. Dahl, P. Krogsgaard-Larsen, Tetrahe-
dron 1999, 55, 771–780.
V. Kubícˇek, J. Kotek, P. Hermann, I. Lukesˇ, Eur. J. Inorg.
Chem. 2007, 333–344.
Acknowledgments
[27]
[28]
[29]
[30]
[31]
Support from the Grant Agency of the Czech Republic (grant
number P207/10/P153), the Grant Agency of the Charles Univer-
sity (grant number 310011) and the Ministry of Education of the
Czech Republic (Long-Term Research Plan, grant number
MSM0021620857) is acknowledged. This work was further sup-
ported by the European Union (EU) and carried out within the
framework of COST Actions TD1004, TD1007 and CM1006
(MSMT number LD 13012). The authors thank Dr. Jakub Hraní-
I. Lukesˇ, J. Kotek, P. Vojtísˇek, P. Hermann, Coord. Chem. Rev.
2001, 216–217, 287–312.
S. Ciattini, F. Costantino, P. Lorenzo-Luis, S. Midollini, A. Or-
landini, A. Vacca, Inorg. Chem. 2005, 44, 4008–4016.
ˇ
J. Simecˇek, P. Hermann, J. Havlícˇková, E. Herdtweck, T. G.
Kapp, N. Engelbogen, H. Kessler, H.-J. Wester, J. Notni, Chem.
Eur. J. 2013, 19, 7748–7757.
cek for AAS measurements.
ˇ
ˇ
[32]
[33]
[34]
J. Simecˇek, O. Zemek, P. Hermann, J. Notni, H.-J. Wester, Mol.
Pharmaceutics, DOI: 10.1021/mp400642s.
ˇ
J. Simecˇek, M. Schulz, J. Notni, J. Plutnar, V. Kubícˇek, J.
[1] E. Matczak-Jon, V. Videnova-Adrabinska, Coord. Chem. Rev.
2005, 249, 2458–2488.
[2] C. Queffélec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli,
Chem. Rev. 2012, 112, 3777–3807.
[3] G. Guerrero, J. G. Alauzun, M. Granier, D. Laurencin, P. H.
Mutin, Dalton Trans. 2013, 42, 12569–12585.
[4] A. Mucha, P. Kafarski, L. Berlicki, J. Med. Chem. 2011, 54,
5955–5980.
Havlícˇková, P. Hermann, Inorg. Chem. 2012, 51, 577–590.
a) J. Beckmann, F. Costantino, D. Dakternieks, A. Duthie, A.
Ienco, S. Midollini, C. Mitchell, A. Orlandini, L. Sorace, Inorg.
Chem. 2005, 44, 9416–9423; b) S. Midollini, A. Orlandini, J.
Coord. Chem. 2006, 59, 1433–1442; c) T. Bataille, F. Con-
stantino, P. Lorenzo-Luis, S. Midollini, A. Orlandini, Inorg.
Chim. Acta 2008, 361, 9–15; d) F. Constantino, A. Ienco, S.
Midollini, A. Orlandini, L. Sorace, A. Vacca, Eur. J. Inorg.
Chem. 2008, 3046–3055.
a) T. Glowiak, W. Sawka-Dobrowolska, Acta Crystallogr., Sect.
B 1977, 33, 2648; b) T. Glowiak, W. Sawka-Dobrowolska, Acta
Crystallogr., Sect. B 1977, 33, 2763–2766; c) Z. Zák, J. Kozísˇek,
T. Glowiak, Z. Anorg. Allg. Chem. 1981, 477, 221–224; d) W.
Sawka-Dobrowolska, T. Glowiak, Acta Crystallogr., Sect. C
1983, 39, 345–347; e) T. Glowiak, Acta Crystallogr., Sect. C
1986, 42, 62–64.
D. Fernández, D. Vega, A. Goeta, Acta Crystallogr., Sect. C
2002, 58, m494–m497; D. Fernández, D. Vega, A. Goeta, Acta
Crystallogr., Sect. C 2003, 59, m543–m545.
E. Alvarez, A. G. Marquez, T. Devic, N. Steunou, C. Serre, C.
Bonhomme, C. Gervais, I. Izquierdo-Barba, M. Vallet-Regi, D.
Laurencin, F. Maurif, P. Horcajada, CrystEngComm 2013, 15,
9899–9905.
τ is a coefficient that reflects the shape of the coordination
polyhedron: τ = 0 for a tetragonal pyramid, and τ = 1 for a
trigonal bipyramid. See: A. W. Addison, T. N. Rao, J. Reedijk,
J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984,
1349–1356.
[5] A. Vioux, J. Le Bideau, P. H. Mutin, D. Leclerq, Top. Curr.
Chem. 2004, 232, 145–174.
ˇ
[35]
[6] I. Rehorˇ, V. Kubícˇek, J. Kotek, P. Hermann, J. Száková, I.
Lukes, Eur. J. Inorg. Chem. 2011, 1981–1989.
[7] M. de los Reyes, P. J. Majewski, N. Scales, V. Luca, ACS Appl.
Mater. Interfaces 2013, 5, 4120–4128.
[8] D. Portet, B. Denizot, E. Rump, J.-J. Lejeune, P. Jallet, J. Col-
loid Interface Sci. 2001, 238, 37–42.
[9] A. Panahifar, M. Mahmoudi, M. R. Doschak, ACS Appl. Ma-
ter. Interfaces 2013, 5, 5219–5226.
[10] L. Sandiford, A. Phinikaridou, A. Protti, L. K. Meszaros, X.
Cui, Y. Yan, G. Frodsham, P. A. Williamson, N. Gaddum,
R. M. Botnar, P. J. Blower, M. A. Green, R. T. M. de Rosales,
ACS Nano 2013, 7, 500–512.
[11] Y. Lalatonne, C. Paris, J.-M. Serfaty, P. Weinmann, M. Lecou-
vey, L. Motte, Chem. Commun. 2008, 2553–2555.
[12] V. Kubícˇek, I. Lukesˇ, Future Med. Chem. 2010, 2, 521–531.
[13] E. Palma, J. D. G. Correia, M. P. C. Campello, I. Santos, Mol.
BioSyst. 2011, 7, 2950.
[14] J. Galezowskaa, E. Gumienna-Konteckab, Coord. Chem. Rev.
2012, 256, 105–124.
ˇ
ˇ
[36]
[37]
[38]
Eur. J. Inorg. Chem. 2014, 4357–4368
4367
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim