Organic Letters
Letter
For a comprehensive understanding of this protocol, we
further studied the selectivity of 1,5-HAT when simultaneously
presented with two inert C(sp3)−H bonds. With the
hydroxamic acid derivative 1a′, the HAT occurred at the
tertiary C(sp3)−H bond (eq 2). When substrate 1b′ was
REFERENCES
■
(1) For selected reviews, see: (a) He, J.; Wasa, M.; Chan, K. S. L.;
Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754. (b) Jia, K.; Chen, Y.
Chem. Commun. 2018, 54, 6105. (c) Karkas, M. D. ACS Catal. 2017,
7, 4999. (d) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev.
2018, 47, 654. (e) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev.
2017, 46, 5193. (f) Chu, J. C. K.; Rovis, T. Angew. Chem., Int. Ed.
̈
̈
̈
2018, 57, 62. (g) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew.
Chem., Int. Ed. 2018, 57, 10034. (h) Tellis, J. C.; Kelly, C. B.; Primer,
D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res.
2016, 49, 1429. (i) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem.,
Int. Ed. 2014, 53, 74.
̈
(2) For selected examples, see: (a) Schwarz, J.; Konig, B. Green
Chem. 2018, 20, 323. (b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem.
Rev. 2017, 117, 8864. (c) Patra, T.; Maiti, D. Chem. - Eur. J. 2017, 23,
7382. (d) Jin, Y.; Fu, H. Asian J. Org. Chem. 2017, 6, 368. (e) Pichette
Drapeau, M.; Gooßen, L. J. Chem. - Eur. J. 2016, 22, 18654. (f) Xuan,
J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(g) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc.
Rev. 2014, 43, 2714. (h) Fawcett, A.; Pradeilles, J.; Wang, Y.;
Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.
(i) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science
2016, 352, 801.
subjected to the standard vinylation conditions, the HAT was
completely regioselective, and only vinylation of secondary
C(sp3)−H bond was observed (eq 3).
(3) For selected examples, see: (a) Fujita, T.; Yamamoto, T.; Morita,
Y.; Chen, H.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2018, 140,
5899. (b) Sun, B.; Balaji, P. V.; Kumagai, N.; Shibasaki, M. J. Am.
Chem. Soc. 2017, 139, 8295. (c) Morita, Y.; Yamamoto, T.; Nagai, H.;
Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 7075. (d) Lee, A.;
Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J.
Am. Chem. Soc. 2014, 136, 10589. (e) Thankachan, A. P.; Asha, S.;
Sindhu, K. S.; Anilkumar, G. RSC Adv. 2015, 5, 62179. (f) Palomo,
C.; Oiarbide, M.; García, J. M. Chem. Soc. Rev. 2004, 33, 65.
(g) Denmark, S. E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem., Int.
Ed. 2005, 44, 4682. (h) Arya, P.; Qin, H. Tetrahedron 2000, 56, 917.
(i) Takayama, S.; McGarvey, G. J.; Wong, C.-H. Chem. Soc. Rev. 1997,
26, 407.
(4) For selected examples, see: (a) Mondal, S.; Chowdhury, S. Adv.
Synth. Catal. 2018, 360, 1884. (b) Caspers, L. D.; Nachtsheim, B.
Chem. - Asian J. 2018, 13, 1231. (c) Moghimi, S.; Mahdavi, M.;
Shafiee, A.; Foroumadi, A. Eur. J. Org. Chem. 2016, 2016, 3282.
(d) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419. (e) Shen,
P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. J. Am. Chem. Soc. 2018,
140, 6545. (f) Wu, Q.-F.; Wang, X.-B.; Shen, P.-X.; Yu, J.-Q. ACS
Catal. 2018, 8, 2577. (g) Liu, T.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2017, 56, 10924. (h) Mu, D.; Gao, F.; Chen,
G.; He, G. ACS Catal. 2017, 7, 1880. (i) Nack, W. A.; Wang, B.; Wu,
X.; Jiao, R.; He, G.; Chen, G. Org. Chem. Front. 2016, 3, 561.
(5) (a) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew.
Chem., Int. Ed. 2013, 52, 11124. (b) He, G.; Zhang, S.-Y.; Nack, W.
A.; Pearson, R.; Rabb-Lynch, J.; Chen, G. Org. Lett. 2014, 16, 6488.
(6) (a) Li, S.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am.
Chem. Soc. 2014, 136, 5267. (b) Li, S.; Zhu, R.-Y.; Xiao, K.-J.; Yu, J.-
Q. Angew. Chem., Int. Ed. 2016, 55, 4317.
In summary, we have developed an efficient approach for
primary, secondary, and tertiary γ-C(sp3)−H vinylation of
amides with alkenylboronic acids. The salient features of this
transformation include absence of transition metals, redox
neutrality, mild reaction conditions, and broad substrate scope,
which make the method highly attractive. Use of this strategy
will enable further discovery of remote C(sp3)−H function-
alization and is currently in progress in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, NMR spectra, and details of
Accession Codes
CCDC 1860263 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(7) Guin, S.; Deb, A.; Dolui, P.; Chakraborty, S.; Singh, V. K.; Maiti,
D. ACS Catal. 2018, 8, 2664.
(8) (a) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017,
56, 306. (b) Liu, T.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137,
5871.
(9) Chen, D.-F.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017, 139,
14897.
Notes
The authors declare no competing financial interest.
(10) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.;
Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.
(11) For selected reviews on HAT chemistry, see: (a) Stateman, L.
M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
(b) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2017, 2056.
(c) Robertson, J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30, 94.
For selected seminal examples on remote C−H functionalization via
HAT, see: (d) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles,
ACKNOWLEDGMENTS
■
Financial support from the National Natural Science
Foundation of China (21732003), the National Key Research
and Development Program of China (2018YFC0310900), and
the Fundamental Research Funds for the Central Universities
(020514380131 and 020814380092) is acknowledged.
D
Org. Lett. XXXX, XXX, XXX−XXX