T. Koike et al. / Tetrahedron Letters 52 (2011) 3009–3011
3011
OH
References and notes
O
O
O
b
a
1. Uchikawa, O.; Fukatsu, K.; Tokunoh, R.; Kawada, M.; Matsumoto, K.; Imai, Y.;
Hinuma, S.; Kato, K.; Nishikawa, H.; Hirai, K.; Miyamoto, M.; Ohkawa, S. J. Med.
Chem. 2002, 45, 4222.
N
N
O
2. Reiter, R. J. Endocr. Rev. 1991, 12, 151.
10
11
2
3. (a) Kato, K.; Hirai, K.; Nishiyama, K.; Uchikawa, O.; Fukatsu, K.; Ohkawa, S.;
Kawamata, Y.; Hinuma, S.; Miyamoto, M. Neuropharmacology 2005, 48, 301; (b)
Miyamoto, M. CNS Neurosci. Ther. 2009, 15, 32.
O
CN
4. (a) Shimada, I.; Maeno, K.; Kazuta, K.; Kubota, H.; Kimizuka, T.; Kimura, Y.;
Hatanaka, K.; Naitou, Y.; Wanibuchi, F.; Sakamoto, S.; Tsukamoto, S. Bioorg.
Med. Chem. 2008, 16, 1966; (b) Bentley, J. M.; Adams, D. R.; Bebbington, D.;
Benwell, K. R.; Bickerdike, M. J.; Davidson, J. E.; Dawson, C. E.; Dourish, C. T.;
Duncton, M. A.; Gaur, S.; George, A. R.; Giles, P. R.; Hamlyn, R. J.; Kennett, G. A.;
Knight, A. R.; Malcolm, C. S.; Mansell, H. L.; Misra, A.; Monck, N. J.; Pratt, R. M.;
Quirk, K.; Roffey, J. R.; Vickers, S. P.; Cliffe, I. A. Bioorg. Med. Chem. Lett. 2004, 14,
2367.
5. Yamano, T.; Yamashita, M.; Adachi, M.; Tanaka, M.; Matsumoto, K.; Kawada,
M.; Uchikawa, O.; Fukatsu, K.; Ohkawa, S. Tetrahedron: Asymmetry 2006, 17,
184.
6. (a) Beierle, J. M.; Osimboni, E. B.; Metallinos, C.; Zhao, Y.; Kelly, T. R. J. Org.
Chem. 2003, 68, 4970; (b) Pilcher, A. S.; DeShong, P. J. Org. Chem. 1996, 61, 6901.
7. Frissen, A. E.; Marcelis, A. T. M.; van der Plas, H. C. Tetrahedron 1989, 45, 803.
8. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
N
H
c
O
N
N
d
(-) -1
1
1
(+)-
Scheme 3. Synthesis of 4-aza analog of ramelteon 1. Reagents and conditions: (a)
TPAP, NMO, molecular sieves 4 Å, MeCN, rt, 68%; (b) NaH, (EtO)2POCH2CN, THF, 0 °C,
91%; (c) (1) H2, Raney cobalt (ODHT-60), NH3, EtOH, rt; (2) EtCOCl, Et3N, CH2Cl2,
0 °C; (3) 10% Pd/C, H2, EtOH, rt, 56%. (d) HPLC resolution (CHIRALPAK AS).
demand Diels–Alder reaction followed by fluoride-induced desily-
lation–cyclization. 4-Aza analog of ramelteon (ꢀ)-1 was synthe-
sized and demonstrated that this scaffold is a potent mimic of
the 5-methoxy indole core of melatonin. The method described
herein can be extended to the synthesis of many valuable analogs
that can be used for the identification of a wide variety of biologi-
cally active compounds as well as melatonin receptor ligands.
9. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
10. The racemic 1 (515 mg) was subjected to the chiral resolution using HPLC
(CHIRALPAK AS™, hexane/ethanol = 84:16, containing 0.1% diethylamine) to
afford (ꢀ)-1 (short retention time, 237 mg, >99% ee) and (+)-1 (long retention
time, 241 mg, >99% ee). (ꢀ)-1: ½a D20
ꢂ
= ꢀ72.8 (c = 0.59, MeOH); 1H NMR (CDCl3)
d 1.16 (3H, t, J = 7.4 Hz), 1.56–1.71 (1H, m), 1.74–1.90 (1H, m), 1.99–2.13 (1H,
m), 2.20 (2H, q, J = 7.4 Hz), 2.25–2.40 (1H, m), 2.69–2.94 (2H, m), 3.07–3.41
(5H, m), 4.46–4.72 (2H, m), 5.50 (1H, br s), 7.80 (1H, s). (+)-1: ½a D20
ꢂ
= +75.6
(c = 0.59, MeOH); 1H NMR (CDCl3) d 1.16 (3H, t, J = 7.7 Hz), 1.57–1.70 (1H, m),
1.75–1.90 (1H, m), 2.00–2.13 (1H, m), 2.20 (2H, q, J = 7.7 Hz), 2.25–2.38 (1H,
m), 2.69–2.94 (2H, m), 3.08–3.39 (5H, m), 4.50–4.67 (2H, m), 5.49 (1H, br s),
7.80 (1H, s).
Acknowledgments
11. The binding affinities of (ꢀ)-1 and (+)-1 were evaluated based on the method
of Kato et al.3 using 2-[125I]-iodomelatonin as radioligand in CHO cells
expressing human melatonin receptor (MT1 or MT2). The dissociation
constant of the compound for the receptor (Ki) was calculated using the
The authors thank Dr. Shigenori Ohkawa and Dr. Yuji Ishihara
for their helpful discussions.
following equation: Ki = IC50/(1 + L/Kd), where
L and Kd represent the
concentration and the affinity constant of 2-[125I]melatonin in the binding
assay, respectively.
Supplementary data
Supplementary data (experimental procedures and supporting
data for all compounds) associated with this article can be found,