Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
ORGANIC
LETTERS
2005
Vol. 7, No. 7
1323-1325
“One-Step” Alkynylation of Adamantyl
Iodide with Silver(I) Acetylides
Rebecca H. Pouwer,† Craig M. Williams,*,† Alan L. Raine,† and Jason B. Harper‡
School of Molecular and Microbial Sciences, UniVersity of Queensland,
St. Lucia, 4072, Queensland, Australia, and School of Chemistry,
UniVersity of New South Wales, Sydney NSW 2052, Australia
Received January 19, 2005
ABSTRACT
Silver(I) acetylides allow one-step alkynylation of adamantyl iodide in yields ranging from 25 to 68%.
Organosilver(I) compounds have found little application to
organic synthesis, as many are unstable to air and water and
decompose to the corresponding organic dimer and metallic
silver.1 An exception to this rule is the acetylide class, which
generally lacks the aforementioned properties and is readily
synthesized.2 Surprisingly, investigations into this class are
limited to a handful of synthetic applications (i.e., addition
to aldehydes,3 ketones,3 acid chlorides,2,4 pyridines,5 and
nucleosides6). A role in elucidating palladium-silver carbon-
ate mediated processes has also been reported.7
corresponding acetates8 (3) and that silver(I) acetylides react
readily with methyl iodide to give methylated acetylenes9
(Scheme 1), we reasoned that silver(I) acetylides (e.g., 4)
Scheme 1
Considering that silver(I) salts, such as AgOAc (1), have
been used for converting adamantyl halides (e.g., 2) to the
† University of Queensland.
may well facilitate alkynylation at a tertiary center (Scheme
1).10 Not surprisingly, this type of C-C bond connection is
poorly represented in the chemical literature.11
Preliminary investigations concentrated on reacting silver-
(I) phenylacetylide 6 with adamantyl bromide 7. The choice
of solvent was found to be crucial as silver(I) acetylides are
notoriously insoluble and require strongly coordinating
aprotic solvents [e.g., dimethyl sulfoxide (DMSO), hexa-
methylphosphoramide (HMPA), and pyridine].12 Reactions
‡ University of New South Wales.
(1) (a) Ba¨hr, G.; Burba, P. In Houben-Weyl, Methoden der Organische
Chemie; Mu¨ller, E., Ed.; Georg Thieme Verlag: Stuttgart, 1970; Vol. 13/
1, p 774. (b) Van Koten, G.; Noltes, J. G. In ComprehensiVe Organometallic
Chemistry; Wilkinson, Stone, Abel, Eds.; Pergamon: New York, 1982; Vol.
2, p 709. (c) ComprehensiVe Organometallic Chemistry II; Pergamon: New
York, 1982-1994; Vol. 3, p 71. (d) Gmelin Handbuch, Der Anorganischen
Chemie, 8. Auflage Teil B5.
(2) Davis, R. B.; Scheiber, D. H. J. Am. Chem. Soc. 1956, 78, 1675-
1678.
(3) Shahi, S. P.; Koide, K. Angew. Chem. Int. Ed. 2004, 43, 2525-
2527.
(4) (a) Inanaga, J.; Katsuki, T.; Takimoto, S.; Ouchida, S.; Inoue, K.;
Nakano, A.; Okukado, N.; Yamaguchi, M. Chem. Lett. 1979, 1021-1024.
(b) Yerino, L. V.; Osborn, M. E.; Mariano, P. S. Tetrahedron 1982, 38,
1579-1591.
(8) Duddeck, H.; Spitzer, M.; Bolte, G. Liebigs Ann. Chem. 1985, 545-
554.
(9) Isabelle, M. E.; Leitch, L. C. Can. J. Chem. 1958, 36, 440-448.
(10) For a two-step alkynylation of adamantane, see: Broxterman, Q.
B.; Hogeveen, H.; Kingma, R. F. Tetrahedron Lett. 1986, 27, 1055-1058.
(11) For one-step alkynylation of adamantane, see: (a) Capozzi, G.;
Ottana´, R.; Romeo, G.; Marcuzzi, F. Gazz. Chim. Ital. 1985, 115, 311-
314 and references therein. (b) Xiang, J.; Fuchs, P. L. Tetrahedron Lett.
1998, 39, 8597-8600 and references therein. (c) Negishi, E.-i.; Baba, S. J.
Am. Chem. Soc. 1975, 97, 7385-7387
(5) (a) Nishiwaki, N.; Minakata, S.; Komatsu, M.; Ohshiro, Y. Chem.
Lett. 1989, 773-776. (b) Agawa, T.; Miller, S. I. J. Am. Chem. Soc. 1961,
83, 449-453.
(6) (a) De Las Heras, F. G.; Tam, S. Y.-K.; Klein, R. S.; Fox, J. J. J.
Org. Chem. 1976, 41, 84-90. (b) Albrecht, H. P.; Repke, D. B.; Moffatt,
J. G. J. Org. Chem. 1974, 39, 2176-2182.
(7) Dillinger, S.; Bertus, P.; Pale, P. Org. Lett. 2001, 3, 1661-1664.
10.1021/ol050121+ CCC: $30.25
© 2005 American Chemical Society
Published on Web 03/11/2005