Chemistry - A European Journal
10.1002/chem.201700563
COMMUNICATION
2011, 7, 504–11.
[
[
[
2] M. Schieber, N. S. Chandel, Curr. Biol. 2014, 24, R453–R462.
3] S. J. Dixon, B. R. Stockwell, Nat. Chem. Biol. 2014, 10, 9–17.
4] C. Nathan, A. Cunningham-Bussel, Nat. Rev. Immunol. 2013, 13, 349–
361.
[
[
[
5] M. P. Murphy, A. Holmgren, N.-G. Larsson, B. Halliwell, C. J. Chang, B.
Kalyanaraman, S. G. Rhee, P. J. Thornalley, L. Partridge, D. Gems, et
al., Cell Metab. 2011, 13, 361–366.
6] M. Ekstrand, M. Gustafsson Trajkovska, J. Perman-Sundelin, P.
Fogelstrand, M. Adiels, M. Johansson, L. Mattsson-Hulten, J. Boren, M.
Levin, PLoS One 2015, 10, e0130898.
7] C. Duval, A.-V. Cantero, N. Auge, L. Mabile, J.-C. Thiers, A. Negre-
Salvayre, R. Salvayre, Free Radic. Biol. Med. 2003, 35, 1589–1598.
8] G. Bauer, Anticancer Res. 2014, 34, 1467–82.
[
[
9] J. F. Woolley, J. Stanicka, T. G. Cotter, Trends Biochem. Sci. 2013, 38,
5
56–565.
Figure 4. Characterization of 3 a) probe uptake by Caco-2 cells at 3 M after
[
10] W. M. Nauseef, Biochim. Biophys. Acta - Gen. Subj. 2014, 1840, 757–
767.
1
h at 37 ° (mean + SD, n=6) *** p≤0.001; b) native PAGE of 4, 3 and Cy5-
(
PEG10 -PNA (single strand), Chromis: green, Cy5: green, overlay: yellow.
)
3
[
[
[
11] S. I. Dikalov, D. G. Harrison, Antioxid. Redox Signal. 2014, 20, 372–382.
12] F. A. Villamena, J. L. Zweier, Antioxid. Redox Signal. 2004, 6, 619–629.
13] X. Chen, F. Wang, J. Y. Hyun, T. Wei, J. Qiang, X. Ren, I. Shin, J. Yoon,
Chem. Soc. Rev. 2016, 45, 2976–3016.
in literature (80-90 nM).[26,27,43,23] However, cyanines are also
known to form H-aggregates in water and buffer especially at
higher concentrations, which may also occur with hydrocyanines
and alter their sensing behavior.[44] What is worth noting is that in
the cell assays the increase in the fluorescent signal obtained with
our ratiometric probe was in the same order of magnitude than
[
14] C. J. Chang, T. Gunnlaugsson, T. D. James, Chem. Soc. Rev. 2015, 44,
4484–4486.
[
15] J. A. Thomas, Chem. Soc. Rev. 2015, 44, 4494–4500.
that reported with the commercially available HCy5 (ROSStar
50).[
45]
[16] T. D. Ashton, K. A. Jolliffe, F. M. Pfeffer, Chem. Soc. Rev. 2015, 44,
547–4595.
17] Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16–29.
6
This seems to indicate that the switch-on response of
4
unconjugated HCy5 is highly influenced by experimental settings
and needs carefully controlled conditions to obtain reliable read-
outs.
In conclusion, an extracellular ratiometric ROS-sensing probe
was developed and, to the best of our knowledge, a novel flexible
[
[18] Z. Lou, P. Li, K. Han, Acc. Chem. Res. 2015, 48, 1358–1368.
[19] X. Li, X. Gao, W. Shi, H. Ma, Chem. Rev. 2014, 114, 590–659.
[20] Y. Tang, D. Lee, J. Wang, G. Li, J. Yu, W. Lin, J. Yoon, Chem. Soc. Rev.
2015, 44, 5003–5015.
x
platform using PNA-(PEG10) as combinatorial unit for analyte
sensing was for the first time introduced. Due to the PNA spacer,
building blocks can be chosen with high flexibility, as the
fluorophore are combined with a simple hybridization step.
Specific superoxide chemodosing revealed that detection of
oxidative stress in cell-free assays as well as cell culture is
possible and is comparable for the modular ratiometric imaging
probe 4 and the covalently linked sensor 2. Albeit the sensitivity
towards superoxide of the proposed fluorophores could be further
improved, the concept of a general modular platform for
[
[
[
[
[
21] X. Gao, G. Feng, P. N. Manghnani, F. Hu, N. Jiang, J. Liu, B. Liu, J. Z.
Sun, B. Z. Tang, Chem. Commun. 2017, 53, 1653–1656.
22] J. Zhang, C. Li, R. Zhang, F. Zhang, W. Liu, X. Liu, S. M.-Y. Lee, H.
Zhang, Chem. Commun. 2016, 52, 2679–2682.
23] H. Xiao, X. Liu, C. Wu, Y. Wu, P. Li, X. Guo, B. Tang, Biosens.
Bioelectron. 2017, 91, 449–455.
24] D. P. Murale, H. Kim, W. S. Choi, D. G. Churchill, Org. Lett. 2013, 15,
3
946–3949.
25] X. Gao, C. Ding, A. Zhu, Y. Tian, Anal. Chem. 2014, 86, 7071–7078.
H. Huang, F. Dong, Y. Tian, Anal. Chem. 2016, 88, 12294–12302.
27] Y. Zhou, J. Ding, T. Liang, E. S. Abdel-Halim, L. Jiang, J. J. Zhu, ACS
extracellular ratiometric sensing shows a promising potential to be
expanded to other analytes.[18]
[26]
[
[
[
Appl. Mater. Interfaces 2016, 8, 6423–6430.
Acknowledgements
28] S. Dupre-Crochet, M. Erard, O. Nusse, J. Leukoc. Biol. 2013, 94, 657–
670.
We thank Prof. Dr. H. Wennemers, Dr. P. Wilhelm and J. Egli for
their technical support. D.B. gratefully acknowledges support from
ETH Zurich Postdoctoral Fellowship and Marie Sklodowska-Curie
action for people COFUND program. Lipoid GmbH is
acknowledged for the endowment to the University of Jena (P.L.).
29] K. Kundu, S. F. Knight, N. Willett, S. Lee, W. R. Taylor, N. Murthy,
Angew. Chem. Int. Ed. 2009, 48, 299–303.
[30] K. Kundu, S. F. Knight, S. Lee, W. R. Taylor, N. Murthy, Angew. Chem.
Int. Ed. 2010, 49, 6134–8.
[
31] J. R. Albani, Principles and Applications of Fluorescence Spectroscopy,
Blackwell Science, Oxford, 2007.
Keywords: fluorescent probe • extracellular • ratiometric •
peptide nucleic acid • reactive oxygen species
[32] H. Sun, E. C. Chow, S. Liu, Y. Du, K. S. Pang, Expert Opin Drug Metab
Toxicol 2008, 4, 395–411.
[
1] B. C. D. and C. J. Chang, B. C. Dickinson, C. J. Chang, Nat. Chem. Biol.
[33] D. Zhu, D. Brambilla, J.-C. Leroux, L. Nyström, Mol. Nutr. Food Res.
This article is protected by copyright. All rights reserved.