Angewandte Chemie International Edition
10.1002/anie.201806294
[
[
[
19] The atropisomer-determining step (steps) is (are) uncertain. There are
up to four possibilities, namely the 2- or 4-bromination of phenols 15
or 6-bromo-15.
2006, 39, 747-760. d) B. M. Trost, M. L. Crawley, Chem. Rev. 2003,
103, 2921-2943.
[38] a) R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H.
Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109, 5856-
5858. b) M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H.
Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya, R. Noyori, J. Am.
Chem. Soc. 1988, 110, 629-631.
[39] Reviews: a) P.-G. Echeverria, T. Ayad, P. Phansavath, V. Ratove-
lomanana-Vidal, Synthesis 2016, 48, 2523-2539. b) F. D. Klingler,
Acc. Chem. Res. 2007, 40, 1367-1376. c) W. Zhang, Y. Chi, X.
Zhang, Acc. Chem. Res. 2007, 40, 1278-1290. d) M. Kitamura, R.
Noyori, “Hydrogenation and Transfer Hydrogenation” in Ruthenium
in Organic Synthesis (Ed. S.-I. Murahshi,) Wiley VCH Weinheim,
2004, 3-52. e) R. Noyori, M. Kitamura, T. Ohkuma, T. Proc. Natl.
Acad. Sci. 2004, 101, 5356-5362.
20] The difference(s) G fixation of the (P)- rather than (M)-axis of the pertinent
Free Activation Enthalpies must be around 2.1 kcal/mol for ac-
counting for as much as 94% ae of the tribromination 15 (P)-16.
21] Phenols with a 3-substituent different from ortho-C
6
H
3
RCO
2
H were
2
,4,6-tribrominated atropselectively by achiral N-bromoimides em-
ploying enantiopure tetrapeptide- (ref.
) or quinine-based catalysts
(
ref. ): a) 3-Substituent = C(=O)N(iPr) : K. T. Barrett, S. J. Miller,
2
Org. Lett. 2015, 17, 580-583. 3-Substituents
= 4-oxo-(3H)-
quinazolin-2-yls: b) M. E. Diener, A. J. Metrano, S. Kusano, S. J. Mil-
ler, J. Am. Chem. Soc. 2015, 137, 12369-12377.‒ c) A. J. Metrano, N.
C. Abascal, B. Q. Mercado, E. K. Paulson, S. J. Miller, Chem. Com-
mun. 2016, 52, 4816-4819.‒ d) A. J. Metrano, N. C. Abascal, B. Q.
Mercado, E. K. Paulson, A. E. Hurtley, S. J. Miller, J. Am. Chem. Soc.
[40] The ee-values of the products in Table 1 were determined by chiral
HPLC, and so were their absolute configurations (details: Supporting
Information).
2
017, 139, 492-516.‒ e) 3-Substituents = quinol-8-yls: R. Miyaji, K.
Asano, S. Matsubara, Chem. Eur. J. 2017, 23, 9996-10000.
22] a) This kind of asymmetric induction is often named “point-to-axial
chirality transfer” even when – like in Figure 1 – the inducing stereo-
center(s) persist(s) rather than vanish(es) in the atropisomer-
determining step, e. g. T. Qin, S. L. Skraba-Joiner, Z. G. Khalil, R. P.
Johnson, R. J. Capon, J. A. Porco, Jr., Nature Chem. 2015, 7, 234-
[
[41] Record-prone asymmetric allylations rac-22 + 23a (c or d) 24a (c
or d) were achieved in the presence of [Pd(allyl)Cl] (2 mol-%) and
2
the imine (5 mol-%) from (+)-camphor and (S)-1-[2-
(diphenylphosphanyl)phenyl)ethylamine by Q.-L. Liu, W.Chen, Q.-Y.
Jiang, X.-F. Bai, Z. Li, Z. Xu, L.-W. Xu, ChemCatChem 2016, 8,
1495-1499: yields = 99% (95% or 98%), ee = 99% (96% or 99%).
[42] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H.
Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109, 5856-
5858.
2
40.– b) Example for atropselective biaryl syntheses by a genuine
point-to-axial chirality transfer: F. Guo, L. C. Konkol, R. J. Thomson,
J. Am. Chem. Soc. 2011, 133, 18-20.
[23] Ru(II)-catalyzed asymmetric hydrogenations of - and -ketoesters in
the presence of (P)-11 up to 95% ee: ref.
[43] M. Kitamura, M. Tokunaga, T. Ohkuma, R. Noyori, Org.
Synth. 1993, 71, 1-13.
[24] Pd(II)-catalyzed DIELS-ALDER reactions of cyclopentadiene with N-
acryloyl- or N-[(E)-crotyl]-1,3-oxazolidin-2-one in the presence of
[44] We obtained these specimens by treating [RuCl
2
with
(R,R,M)-14 – or with (R,R,P)-14 – as detailed in ref. for converting
[RuCl (benzene)] and (M)-1 into the quoted “mixture of
Ru(1)Cl (DMF) and [Ru(1)Cl (DMF)] ”.
(P)-11 with up to 96% ee: G. Celentano, T. Benincori, S. Radaelli, M.
Sada, F. Sannicoló, J. Organomet. Chem. 2002, 643-644, 424-430.
2
2
[25] Ru(II)-catalyzed asymmetric hydrogenations of ,- or ,- diarylated
2
2
2
,-unsaturated nitrile in the presence of (P)-11 with up to 88% ee: T.
[45] The ee-values of the products in Table 2 were determined by chiral
HPLC, and so were their absolute configurations (details: Supporting
Information).
C. Wabnitz, S. Rizzo, C Götte, A. Buschauer, T. Benincori, O. Reiser,
Tetrahedron Lett. 2006, 47, 3733-3736.
[
26] C. H. Archer, N.R. Thomas, D. Gani, Tetrahedron Asym. 1993, 4,
[46] Selected precedence: a) Catalysis by 1 gave (S)-26b with 78.4% ee: Z.
Zhang, H. Qian, J. Longmire, X. Zhang, J. Org. Chem. 2000, 65,
6223-6226. b) Catalysis by ent-1 gave (R)-26b with 89% ee: L. Qiu,
F. Y. Kwong, J. Wu, W. H. Lam, S. Chan, W.-Y. Yu, Y.-M. Li, R.
Guo, Z. Zhou, A. S. C. Chan, J. Am. Chem. Soc. 2006, 128, 5955-
5965.
1
141-1152.
[
[
[
27] I. Nilsson, R. Isaksson, Acta Chem. Scand. B 1985, 39, 531-548.
28] Determined by HPLC (details: Suppporting Information).
29] a) Method: J. Bergman, N. Eklund, Tetrahedron 1980, 36, 1439-
1
443. b) Recent application: ref.
[30] This compound was diastereomerically pure. It should have resulted
[47] A slightly superior asymmetric hydrogenation 25b 26b was
with ee = 99.87% if the ee of its precursor 21 was exactly 95% be-
cause of the Horeau principle (J. P. Vigneron, M. Dhaenes, A. Horeau,
Tetrahedron 1973, 29, 1055-1059).
2
achieved in the presence of [Ir(COD)Cl] (0.05 mol-%) and (R)-N-[(3-
methylpyridin-2-yl)methyl]-7‘-[bis(3,5-di-tert-
butylphenyl)phosphanyl]-1,1‘-spirobiindanyl-7-amine (0.11 mol-%)
by J.-H. Xie, X.-Y. Liu, X.-H. Yang, J.-B. Xie, L.-X. Wang, Q.-L.
Zhou, Angew. Chem. 2012, 124, 205-207; Angew. Chem. Int. Ed. 2012,
1
[31] H-NMR shifts of protons drawn in blue color in Scheme 1 (500 MHz,
3
CDCl ): (R,R)-17a: ‒10°C = 6.56 ppm (92 rel-%) and 6.71 ppm
5
1, 201-203: yield = 98%, ee = 98%.
(8 rel-%), +50°C = 6.59 ppm (100 rel-%).
[
32] a) The crystallographic data of the bis(sulfonate) (R,R,M)-18f derived
from (R,R,M)-18a are contained in CCDC 1822186. They can be ob-
tained free of charge from the Cambridge Crystallographic Data Cen-
tre via www.ccdc.cam.ac.uk/data_request/cif.‒ b) The unit cell con-
tained two crystallographically independent molecules (details: Sup-
porting Informations).
[48] The -ketoester 25c has been hydrogenated with >99:1 cis-selectivity
and 99% ee in 90% yield (A. Ros, A. Magriz, H. Dietrich, J. M. Las-
saletta, R. Fernández, Tetrahedron 2007, 63, 7532-7537; Ru-catalyzed
transfer hydrogenation), with 97:3 cis:trans-selectivity and 99% ee in
51% yield (J. Li, Z. Lin, Q. Huang, Q. Wang, L.Tang, J. Zhu, J. Deng,
Green Chem. 2017, 19, 5367-5370; Rh-catalyzed transfer hydrogena-
tion), and with 99:1 cis:trans-selectivity and 45% ee but less than 10%
conversion (G. Gu, J. Lu, O. Yu, J. Wen, Q. Yin, X. Zhang, Org. Lett.
1
[33] The atropisomer ratio was determined H-NMR spectroscopically
(
500 MHz, CDCl
3
) from the integrals over the dublets of CHCH
3
2
018, 20, 1888-1892; Ir-catalyzed hydrogenation).
(
(R,R,M)-18a = 1.60 ppm, (R,R,P)-18a = 1.67 ppm), over the ddd’s of
1 2
CHCH H O ((R,R,M)-18a = 3.72 ppm, (R,R,P)-18a = 4.30 ppm), over the
ddd of CHCH H O ((R,R,M)-18a = 3.83 ppm), and over the multiplet
of CHCH H O ((R,R,P)-18a = 4.06-4.22 ppm).
1
2
1
2
[
[
34] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
35] The dibromobiindolyl (R,R,M)-18a eluted from the flash-
chromatography column after its atropisomer (R,R,P)-18a.
36] The exact role of PhI(OAc) remains unknown. The biindolyl (R,R)-
alone did not react. Related uses: a) Synthesis of
-amino-3-bromoindoles using 1,3-dibromo-5,5-dimethylhydantoin
: K. Moriyama, K. Ishida and H. Togo Chem. Commun.
[
2
1
7a and PhI(OAc)
2
2
and PhI(OAc)
2
2
015, 51, 2273-2276. b) Synthesis of oligobromoindoles using LiBr
2
and PhI(OAc) : H. Hamamoto, H. Umemoto, M. Umemoto, C. Ohta,
M. Dohshita, Y. Miki, Synlett 2010, 17, 2593-2596.
[37] Reviews: a) R. Ferraccioli, L. Pignataro, Curr. Med. Chem. 2015, 19,
1
5
06-120. b) B. M. Trost, D. R. Fandrick, Aldrichim. Acta 2007, 40,
9-72. c) B. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res.
6
This article is protected by copyright. All rights reserved.