RSC Advances
Paper
ꢂ
mixture was stirred at 32 C for 48 h to give a clear solution. The 2162039), Jiangxi Provincial Department of Science and Tech-
solvents were removed under reduced pressure, and the residue nology (No. 20133BBE50014) and the Science Foundation of the
was puried by ash column chromatography to give the title Education Department of Jiangxi province (No. KJLD13020) for
monoester 11 as a yellow oil (0.437 g, 1.283 mmol, yield 45%).
generous support.
1
H NMR (400 MHz, DMSO-D6): d 1.95 (m, 3H), 3.08 (d, 3H),
3
1
.65 (m, 6H), 3.76 (m, 4H), 4.30 (m, 2H), 4.38 (m, 4H), 5.58 (m,
Notes and references
H), 6.13 (dd, J
1
¼ 0.93 Hz, J
2
¼ 1.44 Hz, 1H).
To mesylate 11 (1 g, 2.936 mmol) was added 1-ethyl-1H-
1 M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and
B. Scrosati, Nat. Mater., 2009, 8, 621–629.
2 W. H. Meyer, Adv. Mater., 1998, 10, 439–448.
3 A. S. Shaplov, R. Marcilla and D. Mecerreyes, Electrochim.
Acta, 2015, 175, 18–34.
4 N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37,
123–150.
5 X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu, H. Zhang, X. Han,
B. Sun, G. Fu, Y. Zhang and F. Yan, J. Mater. Chem., 2012,
22, 18018–18024.
imidazole (0.33 ml, 2.936 mmol), and the resulting mixture was
stirred at 100 C for 10 h. The resulting reaction mixture was
washed with ethyl acetate to give imidazolium mesylate 12 as an
oil (1.217 g, 2.789 mmol, 95%).
ꢂ
1
H NMR (400 MHz, DMSO-D6): d 1.57 (m, 3H), 1.94 (s, 3H),
2
1
.75 (s, 3H), 3.64 (m, 12H), 4.32 (m, 4H), 4.52 (m, 2H), 5.59 (s,
H), 6.11 (s, 1H), 7.34 (s, 1H), 7.65 (s, 1H), 9.77 (s, 1H).
To a suspension of imidazolium mesylate 12 (1 g, 2.291
mmol) in deionized water (30 ml) was added LiTFSI (0.658 g,
.291 mmol 1 eq.), and the mixture was shaken vigorously in
2
6 J. Yuan, D. Mecerreyes and M. Antonietti, Prog. Polym. Sci.,
2013, 38, 1009–1036.
a separation funnel, followed by addition of dichloromethane
into the abovementioned mixture. Aer being shaken 3–4
times, the bottom layer was collected. The organics were dried
with anhydrous sodium sulfate, ltered, and concentrated to
7 J. Yuan and M. Antonietti, Polymer, 2011, 52, 1469–1482.
8 D. Mecerreyes, Prog. Polym. Sci., 2011, 36, 1629–1648.
9 N. Nishimura and H. Ohno, Polymer, 2014, 55, 3289–3297.
10 Z. Jia, W. Yuan, C. Sheng, H. Zhao, H. Hu and G. L. Baker, J.
Polym. Sci., Part A: Polym. Chem., 2015, 53, 1339–1350.
give M3 as a light yellow oil (1.351 g, 2.176 mmol, 95%).
1
H NMR (400 MHz, DMSO-D6): d 1.44 (t, J
1
¼ 7.2 Hz, J ¼ 6.2 Hz,
2
3
H), 1.89 (s, 3H), 3.63 (m, 12H), 4.23 (d, J ¼ 5.9 Hz, 4H), 4.35 (m, 11 Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya,
2H), 5.70 (s, 1H), 6.04 (s, 1H), 7.76 (s, 1H), 7.81 (s, 1H), 9.14 (s, 1H).
K. A. Lyssenko, D. G. Golovanov, I. A. Malyshkina,
N. D. Gavrilova and M. R. Buchmeiser, Macromol. Chem.
Phys., 2008, 209, 40–51.
Synthesis of P1. A mixture of M1 (1 g, 1.84 mmol) and AIBN
ꢂ
(10 mg, 1 wt%) was heated at 90 C under nitrogen for 1 h to give
P1 as a rubber-like solid.
12 A. S. Shaplov, L. Goujon, F. Vidal, E. I. Lozinskaya, F. Meyer,
I. A. Malyshkina, C. Chevrot, D. Teyssie, I. L. Odinets and
Y. S. Vygodskii, J. Polym. Sci., Part A: Polym. Chem., 2009,
47, 4245–4266.
1
H NMR (400 MHz, DMSO-D6): d 0.80 (s, 3H), 1.23 (m, 18H),
1
9
.82 (s, 2H), 4.20 (s, 2H), 7.32 (m, 1H), 7.96 (s, 1H), 8.23 (s, 1H),
.59 (d, J ¼ 7.2 Hz, 1H).
Synthesis of P2. A mixture of M2 (1 g, 1.59 mmol) and AIBN 13 A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, D. O. Ponkratov,
ꢂ
(10 mg, 1 wt%) was heated at 90 C under nitrogen for 1 h to give
I. A. Malyshkina, F. Vidal, O. V. Okatova, G. M. Pavlov,
C. Wandrey, A. Bhide, M. Schonhoff and Y. S. Vygodskii,
Macromolecules, 2011, 44, 9792–9803.
P1 as a rubber-like solid.
1
H NMR (400 MHz, DMSO-D6): d ¼ 1.24 (m, 23H), 1.87 (s,
3
H), 3.51 (s, 2H), 4.19 (dd, J
1
¼ 6.6 Hz, J
2
¼ 13.9 Hz, 2H), 7.79 (s, 14 A. S. Shaplov, E. I. Lozinskaya, D. O. Ponkratov,
I. A. Malyshkina, F. Vidal, P. Aubert, O. V. Okatova,
G. M. Pavlov, L. I. Komarova, C. Wandrey and
Y. S. Vygodskii, Electrochim. Acta, 2011, 57, 74–90.
3H), 9.17 (s, 1H).
Conclusion
1
5 M. Dobbelin, I. Azcune, M. Bedu, A. Ruiz De Luzuriaga,
A. Genua, V. Jovanovski, G. Cabanero and I. Odriozola,
Chem. Mater., 2012, 24, 1583–1590.
Ionic liquid monomer M1 to M4 and polymeric ionic liquid P1
to P2 were designed and synthesized in high yield. It is worth
noting that the mesylate of ethylene oxide-containing alcohol 16 A. S. Shaplov, D. O. Ponkratov, P. Aubert, E. I. Lozinskaya,
could be synthesized in perfect yield and it could be transferred
C. Plesse, A. Maziz, P. S. Vlasov, F. Vidal and
into imidazolium mesylate with high efficiency. M1 to M4 had
Y. S. Vygodskii, Polymer, 2014, 55, 3385–3396.
ꢀ
3
ꢀ1
ionic conductivity around 1–2 ꢁ 10 S cm . P2 showed ionic 17 Z. Jia, W. Yuan, H. Zhao, H. Hu and G. L. Baker, RSC Adv.,
ꢀ4
ꢀ1
conductivity of 2.2 ꢁ 10 S cm , which was 200 times that of
P1 due to the long alkyl chain tether separated polymer back- 18 H. Hu, W. Yuan, L. Lu, H. Zhao, Z. Jia and G. L. Baker, J.
bone and charge centre. Further systematic study of electro- Polym. Sci., Part A: Polym. Chem., 2014, 52, 2104–2110.
chemical properties of M1 to M4 and their corresponding PILs 19 A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya,
2014, 4, 41087–41098.
is ongoing and will be reported in due course.
L. V. Gumileva, C. Surcin, M. Morcrette, M. Armand,
P. Aubert, F. Vidal and Y. S. Vygodskii, J. Mater. Chem. A,
2
015, 3, 2188–2198.
Acknowledgements
2
0 M. A. Aboudzadeh, A. S. Shaplov, G. Hernandez, P. S. Vlasov,
E. I. Lozinskaya, C. Pozo-Gonzalo, M. Forsyth, Y. S. Vygodskii
and D. Mecerreyes, J. Mater. Chem. A, 2015, 3, 2338–2343.
The authors thank the National Natural Science Foundation of
China (No. 21202008), Beijing Natural Science Foundation (No.
5400 | RSC Adv., 2017, 7, 5394–5401
This journal is © The Royal Society of Chemistry 2017