Page 9 of 11
1
Chemistry of Materials
quarterphenyl: beyond the fluorenone-defect. Adv. Funct.
Mater. 2014, 24, 7717-7727.
derivatives for interface engineering of perovskite solar cells.
J. Mater. Chem. A 2018, 6, 21368-21378.
(55) Dai, Y.; Feng, X.; Liu, H.; Jiang, H.; Bao, M. Synthesis of 2-
naphthols via carbonylative stille coupling reaction of 2-
bromobenzyl bromides with tributylallylstannane followed
by the heck reaction. J. Org. Chem. 2011, 76, 10068-10077.
(56) Carpino, L. A.; Lin, Y. Z. Benz[f]indene. J. Org. Chem. 1990,
55, 247-250. (d) Reich, H. J.; Goldenberg, W. S.; Sanders, A.
W.; Jantzi, K. L.; Tzschucke, C. C. Amine- and ether-chelated
aryllithium reagents structure and dynamics. J. Am. Chem.
Soc. 2003, 125, 3509-3521.
(57) Kohn, W.; Sham, L. Self-consistent equations including
exchange and correlation effects. J. Phy. Rev. 1965, 140, A1133.
(58) Rose, A. Space-charge-limited currents in solids. Phys. Rev.
1955, 97, 1538.
(70) Seo, S.; Jeon, I.; Xiang, R.; Lee, C.; Zhang, H.; Tanaka, T.; Lee,
J.-W.; Suh, D.; Ogamoto, T.; Nishikubo, R.; Saeki, A.; Chiashi,
S.; Shiomi, J.; Kataura, H.; Lee, H. M.; Yang, Y.; Matsuo, Y.;
Maruyama, S. Semiconducting carbon nanotubes as crystal
growth templates and grain bridges in perovskite solar cells.
J. Mater. Chem. A 2019, 7, 12987-12992.
2
3
4
5
6
7
8
9
(71) Lee, J.-W.; Kim, S.-G.; Bae, S.-H.; Lee, D.-K.; Lin, O.; Yang, Y.;
Park, N.-G. The interplay between trap density and hysteresis
in planar heterojunction perovskite solar cells. Nano Lett.
2017, 17, 4270-4276.
(72) Hall, B. D.; Zanchet, D.; Ugarte, D. Estimating nanoparticle
size from diffraction measurements. J. Appl. Crystallogr.
2000, 33, 1335-1341.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(59) Han, Q.; Bae, S.-H.; Sun, P.; Hsieh, Y.-T.; Yang, Y. (Michael),
Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G.; Yang, Y. Single
crystal formamidinium lead iodide (FAPbI3): insight into the
structural, optical, and electrical properties. Adv. Mater.
2016, 28, 2253-2258.
(60) Min, H.; Kim, G.; Paik, M. J.; Lee, S.; Yang, W. S.; Jung, M.;
Seok, S. I. Stabilization of precursor solution and perovskite
layer by addition of sulfur. Adv. Energy Mater. 2019, 9,
1803476.
(73) Yin, J.; Cortecchia, D.; Krishna, A.; Chen, S.; Mathews, N.;
Grimsdale, A. C.; Soci, C. Interfacial charge transfer
anisotropy in polycrystalline lead iodide perovskite films. J.
Phys. Chem. Lett. 2015, 6, 1396-1402.
(74) Wang, Q.; Lyu, M.; Zhang, M.; Yun, J.-H.; Chen, H.; Wang, L.
Transition from the tetragonal to cubic phase of
organohalide perovskite: the role of chlorine in crystal
formation of CH3NH3PbI3 on TiO2 substrates. J. Phys. Chem.
Lett. 2015, 6, 4379-4384.
(61) Son, D.-Y.; Kim, S.-G.; Seo, J.-Y.; Lee, S.-H.; Shin, H.; Lee, D.;
Park, N.-G. Universal approach toward hysteresis-free
perovskite solar cell via defect engineering. J. Am. Chem. Soc.
2018, 140, 1358-1364.
(62) Matsuo, Y.; Iwashita, A.; Abe, Y.; Li, C.-Z.; Matsuo, K.;
Hashiguchi, M.; Nakamura, E. Regioselective synthesis of 1,4-
(75) Li, Z.; Kolodziej, C.; McCleese, C.; Wang, L.; Kovalsky, A.;
Samia, A. C.; Zhao, Y.; Burda, C. Effect of chloride
substitution on interfacial charge transfer processes in
MAPbI3 perovskite thin film solar cells: planar versus
mesoporous. Nanoscale Adv. 2019, 1, 827-833.
(76) Liu, C.; Wang, K. Du, P.; Meng, T.; Yu, X.; Cheng, S. Z. D.;
Gong, X. High performance planar heterojunction perovskite
solar cells with fullerene derivatives as the electron transport
layer. ACS Appl. Mater. Interfaces 2015, 7, 1153-1159.
(77) Tao, C.; Velden, J. V. D.; Cabau, L.; Montcada, N. F.;
Neutzner, S.; Kandada, A. R. S.; Marras, S.; Brambilla, L.;
Tommasini, M.; Xu, W.; Sorrentino, R.; Perinot, A.; Caironi,
M.; Bertarelli, C.; Palomares, E.; Petrozza, A. Fully solution-
processed n-i-p-like perovskite solar cells with planar
junction: how the charge extracting layer determines the
open-circuit voltage. Adv. Mater. 2017, 29, 1604493.
(78) Zhou, W.; Zhen, J.; Liu, Q.; Fang, Z.; Li, D.; Zhou, P.; Chen,
T.; Yang, S. Successive surface engineering of TiO2 compact
layers via dual modification of fullerene derivatives affording
hysteresis-suppressed high-performance perovskite solar
cells. J. Mater. Chem. A 2017, 5, 1724-1733.
(79) Y.-C. Wang, X. Li, L. Zhu, X. Liu, W. Zhang and J. Fang,
Efficient and hysteresis-free perovskite solar cells based on a
solution processable polar fullerene electron transport layer.
Adv. Energy Mater. 2017, 7, 1701144.
(80) Wojciechowski, K.; Ramirez, I.; Gorisse, T.; Dautel, O.;
Dasari, R.; Sakai, N.; Hardigree, J. M.; Song, S.; Marder, S.;
Riede, M.; Wantz, G.; Snaith, H. J. Cross-linkable fullerene
derivatives for solution-processed n-i-p perovskite solar
cells. ACS Energy Lett. 2016, 1, 648-653.
di(organo)[60]fullerenes
through
DMF-assisted
monoaddition of silylmethyl grignard reagents and
subsequent alkylation reaction. J. Am. Chem. Soc. 2008, 130,
15429-15436.
(63) Su, Y.-T.; Wang, Y.-L.; Wang, G.-W. Palladium-catalyzed
heteroannulation of [60]fullerene with N-(2-arylethyl)
sulfonamides via C–H bond activation. Org. Chem. Front.
2014, 1, 689-693.
(64) Zhou, D.-B.; Wang, G.-W. Synthesis of [60]fullerene-fused
tetralones via palladium-catalyzed ketone-directed sp2 C–H
activation and sp3 C–H functionalization. Adv. Synth. Catal.
2016, 358, 1548-1554.
(65) Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.;
Cao, Y.; Liu, F.; Russell, T. P.; Janssen, R. A. J.; Peng, X. Deep
absorbing porphyrin small molecule for high-performance
organic solar cells with very low energy losses. J. Am. Chem.
Soc. 2015, 137, 7282-7285.
(66) Cuesta, V.; Vartanian, M.; Cruz, P. d. l.; Singhal, R.; Sharma,
G. D.; Langa, F. Comparative study on the photovoltaic
characteristics of A–D–A and D–A–D molecules based on Zn-
porphyrin; a D–A–D molecule with over 8.0% efficiency. J.
Mater. Chem. A 2017, 5, 1057-1065.
(67) Tian, C.-B.; Castro, E.; Betancourt-Solis, G.; Nan, Z.-A.;
Fernandez-Delgado, O.; Jankuru, S.; Echegoyen, L. Fullerene
derivative with a branched alkyl chain exhibits enhanced
charge extraction and stability in inverted planar perovskite
solar cells. New, J. Chem. 2018, 42, 2896-2902.
(68) Azimi, H.; Ameri, T.; Zhang, H.; Hou, Y.; Quiroz, C. O. R.;
Min, J.; Hu, M.; Zhang, Z.-G.; Przybilla, T.; Matt, G. J.;
Spiecker, E.; Li, Y.; Brabec, C. J. A Universal interface layer
based on an amine-functionalized fullerene derivative with
dual functionality for efficient solution processed organic
and perovskite solar cells. Adv. Energy Mater. 2015, 5,
1401692.
(81) Dong, Y.; Li, W.; Zhang, X.; Xu, Q.; Liu, Q.; Li, C.; Bo, Z.
Highly efficient planar perovskite solar cells via interfacial
modification with fullerene derivatives. Small 2016, 12, 1098-
1104.
(82) Xu, Q.; Lu, Z.; Zhu, L.; Kou, C.; Liu, Y.; Li, C.; Meng, Q.; Li,
W.; Bo, Z. Elimination of the J–V hysteresis of planar
perovskite solar cells by interfacial modification with a
thermo-cleavable fullerene derivative. J. Mater. Chem. A
2016, 4, 17649-17654.
(83) McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.;
Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai1, N.;
Korte, L.; Rech, B.; Johnston, M. B.; Herz1, L. M.; Snaith, H. J.
(69) Wang, H.; Cai, F.; Zhang, M.; Wang, P.; Yao, J.; Gurney, R. S.;
Li, F.; Liu, D.; Wang, T. Halogen-substituted fullerene
ACS Paragon Plus Environment