A. V. Reddy et al. / Tetrahedron Letters 44 (2003) 6257–6260
6259
The reaction of indole with methyl vinyl ketone in the
presence of a catalytic amount of bismuth triflate in
acetonitrile gave 1-(3%-indolyl)butan-3-one, 1 in 95%
yield (Scheme 1).16 Similarly, various a,b-unsaturated
ketones such as cyclic enones, acyclic enones such as
chalcones and naphthoquinone were reacted with
indole, 2-methylindole and 5-methoxyindole to give the
corresponding Michael adducts in excellent yields. In
all cases the reactions proceeded smoothly at ambient
temperature with high selectivity (Table 1).
4. (a) Iqbal, Z.; Jackson, A. H.; Rao, K. R. N. Tetrahedron
Lett. 1998, 29, 2577; (b) Dujardin, G.; Poirier, J. M. Bull.
Soc. Chim. Fr. 1994, 131, 900; (c) Harrington, P. E.;
Kerr, M. A. Synlett. 1996, 1047; (d) Manabe, K.;
Aoyama, N.; Kobayashi, S. Adv. Synth. Catal. 2001, 343,
174; (e) Yadav, J. S.; Reddy, B. V. S.; Abraham, S.;
Sabitha, G. Synthesis 2001, 2165; (f) Bandini, M.; Cozzi,
P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Ronchi,
A. U. J. Org. Chem. 2002, 67, 3700.
5. For a comprehensive review focused on the asymmetric
catalytic arylation reaction, see: Bolm, C.; Hildebrand, J.
P.; Muniz, K.; Hermanns, N. Angew. Chem., Int. Ed.
2001, 40, 3284.
The products were characterized by 1H NMR, 13C
NMR, IR and mass spectroscopy. In the case of entries
4 and 5, the reaction of indole with 1,5-diphenyl-1,4-
pentadien-3-one and 2-benzylidenecyclohexanone gave
1:1 and 7:3 diastereomeric mixtures of the products 4
and 5, respectively. Interestingly, when indole reacts
with 2-methyl-1,4-naphthoquinone, it attacks at the
more hindered position and gave exclusively 6 (entry 6).
The product 6 was characterized by the presence of
methylene signals at l 3.30 (1H, d, J=16 Hz) and 3.64
(1H, d, J=16 Hz) and a tertiary methyl at l 1.79 (s,
6. Houlihan, W. J. Indoles; John Wiley & Sons Inc: New
York, 1972; Vol. I, p. 71.
7. (a) Labrouillere, M.; Le Roux, C.; Gaspard, H.; Lapor-
terie, A.; Dubac, J. Tetrahedron Lett. 1997, 38, 8871; (b)
Repichet, S.; Le Roux, C.; Dubac, J.; Desmurs, J. R. Eur.
J. Org. Chem. 1998, 2743.
8. Repichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J. J.
Org. Chem. 1999, 64, 6479.
9. (a) Garrigues, B.; Gonzaga, F.; Robert, H.; Dubac, J. J.
Org. Chem. 1997, 62, 4880; (b) Robert, H.; Garrigues, B.;
Dubac, J. Tetrahedron Lett. 1998, 39, 1161.
1
3H) in its H NMR spectrum. However, in the case of
2-methylindole attack at the less hindered position was
observed to give product 7, which was characterized by
the presence of two vinylic methyls at l 2.08 (3H, s)
10. Laurent-Robert, H.; Garrigues, B.; Dubac, J. Synlett.
2000, 1160.
11. Bhatia, K. A.; Eash, K. J.; Leonard, N. M.; Oswald, M.
C.; Mohan, R. S. Tetrahedron Lett. 2001, 42, 8129.
12. Carrigan, M. D.; Eash, K. J.; Oswald, M. C.; Mohan, R.
S. Tetrahedron Lett. 2001, 42, 8133.
13. Wieland, L. C.; Carrigan, M. C.; Sarapa, D.; Smith, R.
S.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027.
14. Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Angew.
Chem., Int. Ed. 2000, 39, 2877.
1
and l 2.14 (3H, s) in its H NMR spectrum. Under
similar conditions, 5-methoxyindole adds to the 2- and
3-positions of 2-methyl-1,4-naphthoquinone to give 8a
and 8b in a 1:1 ratio. The reaction is highly efficient and
3 mol% of bismuth triflate was sufficient to catalyze the
reaction which proceeded smoothly at ambient temper-
ature with high yields.
15. Labrouillere, M.; Le Roux, C.; Gaspard, H.; Laporterie,
A.; Dubac, J.; Desmurs, J. R. Tetrahedron Lett. 1999, 40,
285. Bismuth triflate synthesized by this procedure is
reported to be mainly the tetrahydrate. Recently, another
procedure for the synthesis of bismuth triflate has been
reported: Repichet. S.; Zwick. A.; Vendier, L.; Le Roux.
C.; Dubac, J. Tetrahedron Lett. 2002, 43, 993.
In summary, we have demonstrated that bismuth tri-
flate is a catalyst for alkylation of indoles.
Acknowledgements
16. Typical experimental procedure: To a solution of indole (5
mmol), and the vinyl ketone (5 mmol) in CH3CN (10 ml)
was added bismuth triflate (3 mol%) and the mixture was
stirred for the appropriate time (see Table 1). After
completion of the reaction, as indicated by TLC, the
catalyst was filtered. The filtrate was concentrated under
reduced pressure to give the crude product, which was
purified by silica gel column chromatography to afford
the pure product.
The authors thank CSIR, New Delhi for providing
fellowships.
References
1. (a) Sakagami, M.; Muratake, H.; Natsume, M. Chem.
Pharm. Bull. 1994, 42, 1393; (b) Fukuyama, T.; Chen, X.
J. Am. Chem. Soc. 1994, 116, 3125; (c) Vaillancouirt, V.;
Albizati, K. F. J. Am. Chem. Soc. 1993, 115, 3499; (d)
Murakatake, H.; Kumagami, H.; Natsume, M. Tetra-
hedron 1990, 46, 6351; (e) Murakatake, H.; Natsume, M.
Tetrahedron Lett. 1990, 46, 6351.
5: Solid, m.p. 154–155°C; IR (KBr) wmax (cm−1): 2937,
1
1703, 1453, 1231 and 751; H NMR (300 MHz, CDCl3)
l: 1.26 (1H, m), 1.68 (2H, m), 1.88 (2H, m), 2.26 (1H, m),
2.30 (2H, m), 3.72, (1H, m), 4.60 (1H, d, J=7.8 Hz), 7.02
(2H, t, J=7.2 Hz), 7.13 (2H, t, J=7.2 Hz), 7.20 (2H, d,
J=7.8 Hz), 7.26 (1H, d, J=7.8 Hz), 7.32 (2H, d, J=8.0
Hz), 7.72 (1H, d, J=7.8 Hz) and 7.80 (1H, bs); 13C NMR
(75 MHz, CDCl3) l: 12.60, 24.15, 29.27, 33.61, 41.99,
42.28, 53.96, 110.55, 113.30, 118.79, 119.03, 120.87,
125.90, 127.49, 128.31, 131.72, 135.22, 143.16 and 212.96.
EIMS m/z (%): 303 (M+, 8), 221 (100), 205 (12), 178 (14),
155 (8), 141 (16), 119 (12), 91 (25) and 43 (75). Anal.
calcd for C21H21NO: C, 83.13; H, 6.98; N, 4.62; O, 5.27.
Found: C, 83.32; H, 6.66; N, 4.66; O, 5.36.
2. Sundberg, R. J. The Chemistry of Indoles; Academic
Press: New York, 1996; p. 113.
3. (a) Moore, R. E.; Cheuk, C.; Yang, X. Q.; Patterson, G.
M. L.; Bonjouklian, R.; Smita, T. A.; Mynderse, J.;
Foster, R. S.; Jones, N. D.; Skiartzendruber, J. K.;
Deeter, J. B. J. Org. Chem. 1987, 52, 1036; (b) Garnick,
R. L.; Levery, S. B.; LeQuesne, U. P. J. Org. Chem. 1978,
43, 1226; (c) Moore, R. E.; Cheuk, C.; Patterson, G. M.
L. J. Am. Chem. Soc. 1984, 106, 6456.