Organic Letters
Letter
see: (d) Trost, B. M.; Taft, B. R.; Masters, J. T.; Lumb, J.-P. J. Am. Chem.
Soc. 2011, 133, 8502.
In conclusion, we have accomplished a highly chemo-, regio-,
and enantioselective decarboxylative alkynylation of terminal
allenes with arylpropiolic acids to construct enantiomerically
enriched branched 1,4-enynes under mild conditions with
commercially available [Rh(cod)Cl]2 and (R)-Tol-BINAP.
This reaction releases CO2 as the only byproduct, and neither
requires strongly basic reaction conditions nor premetalated
alkyne nucleophiles. Further investigations regarding an
extension toward related arylpropiolic acid pronucleophiles as
well as alkynes as allene surrogates are ongoing in our laboratory.
(7) For selected examples on transformations of 1,4-enynes, see:
(a) Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339. (b) Heffron,
T. P.; Trenkle, J. D.; Jamison, T. F. Tetrahedron 2003, 59, 8913. (c) Shi,
X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
(d) Bhanu Prasad, B. A.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc.
2005, 127, 12468. (e) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128,
12614. (f) Vasu, D.; Das, A.; Liu, R.-S. Chem. Commun. 2010, 46, 4115.
(g) Sato, T.; Onuma, T.; Nakamura, I.; Terada, M. Org. Lett. 2011, 13,
4992. For occurrences as intermediates in total synthesis, see:
(h) Jacobson, M.; Redfern, R. E.; Jones, W. A.; Aldridge, M. H. Science
1970, 170, 542. (i) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745.
(j) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1994, 116, 10310.
ASSOCIATED CONTENT
* Supporting Information
■
S
(k) Hickmann, V.; Alcarazo, M.; Furstner, A. J. Am. Chem. Soc. 2010,
̈
The Supporting Information is available free of charge on the
132, 11042.
(8) For transition-metal-catalyzed enantioselective syntheses of 1,4-
enynes, see: (a) Li, H.; Alexakis, A. Angew. Chem. 2012, 124, 1079;
Angew. Chem., Int. Ed. 2012, 51, 1055. (b) Dabrowski, J. A.; Gao, F.;
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 4778. (c) Hamilton, J. Y.;
Sarlah, D.; Carreira, E. M. Angew. Chem. 2013, 125, 7680; Angew. Chem.,
Int. Ed. 2013, 52, 7532. (d) Makida, Y.; Takayama, Y.; Ohmiya, H.;
Sawamura, M. Angew. Chem. 2013, 125, 5458; Angew. Chem., Int. Ed.
2013, 52, 5350. (e) Harada, A.; Makida, Y.; Sato, T.; Ohmiya, H.;
Sawamura, M. J. Am. Chem. Soc. 2014, 136, 13932.
Experimental procedures and analytical data for the
1
synthesized compounds, including H and 13C NMR
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(9) For a recent review, see: Koschker, P.; Breit, B. Acc. Chem. Res.
2016, 49, 1524.
(10) For examples of C−C bond formation, see: (a) Li, C.; Breit, B. J.
Am. Chem. Soc. 2014, 136, 862. (b) Beck, T. M.; Breit, B. Angew. Chem.
2017, 129, 1929; Angew. Chem., Int. Ed. 2017, 56, 1903.
(11) For a recent review, see: Haydl, A.; Breit, B.; Liang, T.; Krische, M.
J. Angew. Chem. 2017, 129, 11466; Angew. Chem., Int. Ed. 2017, 56,
11312.
(12) For examples of C−C bond formation, see: (a) Beck, T. M.; Breit,
B. Org. Lett. 2016, 18, 124. (b) Cruz, F. A.; Chen, Z.; Kurtoic, S. I.; Dong,
V. M. Chem. Commun. 2016, 52, 5836. (c) Li, C.; Grugel, C. P.; Breit, B.
Chem. Commun. 2016, 52, 5840. (d) Beck, T. M.; Breit, B. Eur. J. Org.
Chem. 2016, 2016, 5839. (e) Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc.
2017, 139, 1029. (f) Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.;
Dong, V. M. J. Am. Chem. Soc. 2017, 139, 10641.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the DFG and the Fonds der
Chemischen Industrie. We thank Umicore, BASF, and Wacker
for generous gifts of chemicals. C.P.G. is grateful for a Ph.D.
fellowship from the Fonds der Chemischen Industrie. Thorsten
M. Beck, Zi Liu, and Dino Berthold (all University of Freiburg)
are acknowledged for sharing previously prepared allenes.
Technical support by Joshua Emmerich (University of Freiburg)
for HPLC separations is acknowledged.
(13) For a review on decarboxylative coupling reactions of propiolic
acids, see: Park, K.; Lee, S. RSC Adv. 2013, 3, 14165.
(14) For selected recent examples on decarboxylative reactions
involving propiolic acids, see: (a) Li, X.; Yang, F.; Wu, Y.; Wu, Y. Org.
Lett. 2014, 16, 992−995. (b) Sun, F.; Gu, Z. Org. Lett. 2015, 17, 2222.
(c) Sun, F.; Gu, Z. Org. Lett. 2015, 17, 2222. (d) Lim, J.; Choi, J.; Kim,
H.-S.; Kim, I. S.; Nam, K. C.; Kim, J.; Lee, S. J. Org. Chem. 2016, 81, 303.
(e) Yang, L.; Jiang, L.; Li, Y.; Fu, X.; Zhang, R.; Jin, K.; Duan, C.
Tetrahedron 2016, 72, 3858. (f) Lee, J.-H.; Raja, G. C. E.; Yu, S.; Lee, J.;
Song, K. H.; Lee, S. ACS Omega 2017, 2, 6259.
REFERENCES
■
(1) Hendrickson, J. B. J. Am. Chem. Soc. 1975, 97, 5784.
(2) (a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Ed.; Springer: Berlin, 1999. (b) Catalytic Asymmetric
Synthesis; Ojima, I., Ed.; Wiley: New York, 2000. (c) New Frontiers in
Asymmetric Catalysis; Mikami, K., Lautens, M., Eds.; Wiley: Hoboken,
2007.
(3) (a) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.;
VCH: Weinheim, 1995. (b) Acetylene Chemistry: Chemistry, Biology, and
Material Science; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; VCH:
Weinheim, 2005.
(4) For a review of enantioselective additions of alkyne pronucleo-
philes to carbonyl groups, see: (a) Trost, B. M.; Weiss, A. H. Adv. Synth.
Catal. 2009, 351, 963.
(5) For selected recent examples of enantioselective additions of
alkyne pronucleophiles to imines, see: (a) Orlandi, S.; Colombo, F.;
Benaglia, M. Synthesis 2005, 1689. (b) Liu, B.; Huang, L.; Liu, J.; Zhong,
Y.; Li, X.; Chan, A. S. C. Tetrahedron: Asymmetry 2007, 18, 2901.
(c) Peng, F.; Shao, Z.; Chan, A. S. C. Tetrahedron: Asymmetry 2010, 21,
465.
(16) The absolute configuration was assigned as (R) by comparison
with the optical rotation of known compound 4k. For details, see the
(17) For details on substrate synthesis, see the Supporting
(18) Gellrich, U.; Meißner, A.; Steffani, A.; Kahny, M.; Drexler, H.-J.;
̈
Heller, D.; Plattner, D. A.; Breit, B. J. Am. Chem. Soc. 2014, 136, 1097.
(19) For details on further studies on elucidating the reaction
(20) It is likely that the formation of the Rh(III) hydride species occurs
via a protonation pathway; see ref 18. However, a pathway involving
oxidative addition to the O−H bond of TFA cannot be ruled out
completely.
(6) For selected examples, see: (a) Nishimura, T.; Guo, X.-X.; Hayashi,
T. Chem. - Asian J. 2008, 3, 1505. (b) Shirakura, M.; Suginome, M.
Angew. Chem. 2010, 122, 3915; Angew. Chem., Int. Ed. 2010, 49, 3827.
(c) Fan, B.; Yang, Q.; Hu, J.; Fan, C.; Li, S.; Yu, L.; Huang, C.; Tsang, W.;
Kwong, F. Angew. Chem. 2012, 124, 7941; Angew. Chem., Int. Ed. 2012,
51, 7821. For sequential hydroalkynylation/asymmetric 1,4-reduction,
D
Org. Lett. XXXX, XXX, XXX−XXX