Paper
Catalysis Science & Technology
much higher and more efficient than that obtained by the
traditional batch process.26
6 (a) L. Došen-Mićović and Ž. Čeković, J. Phys. Org. Chem.,
1998, 11, 887–894; (b) Ž. Čeković and J. Serb, J. Serb. Chem.
Soc., 1986, 51, 205–211; (c) R. Barker, J. Org. Chem., 1970, 35,
461–464.
7 (a) K. Bock, C. Pedersen and H. Thogersen, Acta Chem.
Scand., Ser. B, 1981, 35, 441–449; (b) R. C. Hockett, H. G.
Fletcher Jr. and E. L. Sheffield, et al., J. Am. Chem. Soc.,
1946, 68, 927–930.
8 (a) G. Fleche and M. Huchette, Starch/Staerke, 1986, 38,
26–30; (b) J. M. Robinson, A. M. Wadle and M. D. Reno,
et al., Energy Fuels, 2015, 29, 6529–6535; (c) D. J.
Schreck, M. M. K. Bradford and N. A. Clinton, et al., US
pat. US20090259057, 2009; (d) A. A. Dabbawala, D. K. Mishra
and G. W. Huber, et al., Appl. Catal., A, 2015, 492,
252–261; (e) J. Li, A. Spina and J. A. Moulijn, et al.,
Catal. Sci. Technol., 2013, 3, 1540–1546; ( f ) A.
Yamaguchi, N. Hiyoshi and O. Sato, et al., Green Chem.,
2011, 13, 873–881.
9 (a) B. Op de Beeck, J. Geboers and S. Van de Vyver, et al.,
ChemSusChem, 2013, 6, 399; (b) J. Xi, Y. Zhang and D. Ding,
et al., Appl. Catal., A, 2014, 469, 108–115; (c) A. A.
Dabbawala, D. K. Mishra and J. S. Hwang, Catal. Commun.,
2013, 42, 1–5; (d) A. Yamaguchi, N. Hiyoshi and O. Sato,
et al., Green Chem., 2011, 13, 873–881.
Conclusions
In summary, the structure–performance of BIL-catalyzed
dehydrative formation of isosorbide from sorbitol was ex-
plored extensively, thereby offering an efficient, eco-friendly
and reusable catalyst. Kinetic studies demonstrated that such
sequential steps are different in the rate of formation of ad-
ducts between sorbitol and 1,4-sorbitan with the acid. The re-
markable difference in performance in the second dehydra-
tion of various BILs was attributed to their respective ability
to protonate polyhydroxyl substrates. Consequently, a proper
value of AN rather than the inherent of acidity was found to
be essential for an optimized yield of isosorbide. A continu-
ous process was finally constructed upon system optimiza-
tion using the preferred BIL-4 as the catalyst, which gener-
ated a yield of 82% in isosorbide with a purity of 99.3% at
balance.
Acknowledgements
Financial support by the National Basic Research Program of
China (973 Program) 2015CB251401, the National Natural Sci-
ence Foundation of China (No. 21476240, 21606238,
21374029), the Instrument Developing Project of the Chinese
Academy of Sciences (No. YZ201521), the Shanghai education
commission key projects of scientific research and innovation
(14ZZ061), the Key Research Program of Frontier Sciences,
CAS (QYZDY-SSW-JSC011), CAS (Chinese Academy of Sci-
ences) 100-Talent Program (2014), and Key Research Program
of Frontier Sciences, CAS (QYZDY-SSW-JSCo11) is gratefully
acknowledged.
10 J. Xia, D. Yu and Y. Hu, et al., Catal. Commun., 2011, 12,
544–547.
11 M. Kurszewska, E. Skorupowa and J. Madaj, et al.,
Carbohydr. Res., 2002, 337, 1261–1268.
12 P. Sun, D. H. Yu and H. Huang, et al., Korean J. Chem. Eng.,
2011, 28, 99–105.
13 X. Zhang, D. Yu, J. Zhao and H. Huang, et al., Catal.
Commun., 2014, 43, 29–33.
14 J. Xi, Y. Zhang and D. Ding, et al., Appl. Catal., A, 2014, 469,
108–115.
15 M. Gu, D. Yu and H. Zhang, et al., Catal. Lett., 2009, 133,
214–220.
Notes and references
1 (a) S. P. Collins, P. D. Levy and J. L. Martindale, et al., Acad.
Emerg. Med., 2016, 23, 922–931; (b) I. S. Anand, S. W. Tam
and W. T. Archambault, Circulation, 2005, 112, 704.
2 (a) Y. Zhu, M. Durand and V. Molinier, et al., Green Chem.,
2008, 10, 532–540; (b) B. S. Rajput, S. R. Gaikwad and S. K.
Menon, et al., Green Chem., 2014, 16, 3810–3818; (c) C. C.
Chien and J. H. Liu, Langmuir, 2015, 31, 13410–13419; (d) P.
Barbaro, F. Liguori and C. Moreno-Marrodan, Green Chem.,
2016, 18, 2935–2940.
3 (a) F. Fenouillot, A. Rousseau and G. Colomines, et al., Prog.
Polym. Sci., 2010, 35, 578–622; (b) P. A. Fokou and M. A. R.
Meier, J. Am. Chem. Soc., 2009, 131, 1664–1665; (c) R. M.
Gohil, Polym. Eng. Sci., 2009, 543–553.
16 (a) A. K. Chakraborti and S. R. Roy, J. Am. Chem. Soc.,
2009, 131, 6902; (b) Q. Wang and X. Yao, et al., Green Chem.,
2012, 14, 2559–2566; (c) K. Matuszek, A. Chrobok and F.
Coleman, et al., Green Chem., 2014, 16, 3463–3471; (d) J.
Banothu, R. Gali and R. Velpula, et al., J. Chem. Sci.,
2013, 125, 843–849; (e) S. J. Zhang, J. Sun and X. Zhang,
et al., Chem. Soc. Rev., 2014, 43, 7838–7869.
17 (a) A. K. Chakraborti and S. R. Roy, J. Am. Chem. Soc.,
2009, 131, 6902; (b) Q. Wang, X. Yao and S. Tang, et al.,
Green Chem., 2012, 14, 2559–2566; (c) K. Matuszek, A.
Chrobok and F. Coleman, et al., Green Chem., 2014, 16,
3463–3471; (d) A. M. da Costa Lopes and R. Bogel-Łukasik,
ChemSusChem, 2015, 8, 947–965; (e) A. M. da Costa Lopes
and R. Bogel-Łukasik, Green Chem., 2014, 16, 1617–1627; ( f )
S. Zhang, J. Sun and X. Zhang, et al., Chem. Soc. Rev.,
2014, 43, 7838–7869.
4 R. Steinmetz and N. A. Mitchner, et al., Endocrinology,
1998, 139, 2741–2747.
5 (a) Y. Li, Y. Liao and X. Cao, et al., Biomass Bioenergy,
2015, 74, 148–161; (b) F. Aricò and P. Tundo, J. Org. Chem.,
2016, 12, 2256–2266; (c) M. E. Zakrzewska, E. Bogel-
Łukasikm, R. Bogel-Łukasik and R. Bogel-Lukasik, Chem.
Rev., 2011, 111, 397–417.
18 (a) C. Lansalot-Matras and C. Moreau, Catal. Commun.,
2003, 4, 517–520; (b) Y. N. Li, J. Q. Wang and L. N. He, et al.,
Green Chem., 2012, 14, 2752–2758; (c) H. Li, W. J. Xu and T.
Huang, et al., ACS Catal., 2014, 4, 4446–4454; (d) C. Shi, Y.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2017