Green Chemistry
Please do not adjust margins
Page 4 of 5
DOI: 10.1039/C8GC00428E
COMMUNICATION
Journal Name
diol is a challenge when using alternatives to stoichiometric
amounts of dibutyl tinoxide, because a trans-diol is difficult to
form a cyclic dioxolane-type intermediate with catalysts.7a As
Fe(dibm)3 was found to be able to catalyze the selective
benzylation of carbohydrates containing a trans-diol,8 we
expected that Fe(III) catalysts would also catalyze the selective
acylation of these type of compounds. Unfortunately, our
attempt failed, possibly due to the same reason, the formation
of a cyclic dioxolane-type intermediate being difficult.
2 (a) T. B. Grindley, Adv. Carbohydr. Chem. Bi., 1998, 53, 17-
142; (b) S. David, A. Thieffry, A. Forchioni, Tetrahedron Lett,
1981, 22, 2647-2650.
3 (a) M. M. Whalen, B. G. Loganathan, K. Kannan, Environ.
Res., 1999, 81, 108–116; (b) S. M. Jenkins, K. Ehman, S. J.
Barone, Brain Res, 2004, 151, 1–12; (c) W. Seinen, J. G. Vos,
R. van Krieken, A. Penninks, R. Brands, H. Hooykaas, Toxicol.
Appl. Pharmacol., 1977, 42, 213–224.
4 (a) D. Lee, C. L. Williamson, L. Chan, M. S. Taylor, J. Am.
Chem. Soc., 2012, 134, 8260-8267; (b) D. Lee, M. S. Taylor, J.
Am. Chem. Soc., 2011, 133, 3724-3727; (c) L. N. Chan, M. S.
Taylor, Org. Lett., 2011, 13, 3090-3093.
In conclusion, Fe(acac)3 was successfully applied as a catalyst
for regio/site-selective acylation of 1,2-diols, 1.3-diols, and
carbohydrates containing cis-diols. The acylation reaction is
5 (a) H. Dong, Y. X. Zhou, X. Pan, F. Cui, W. Liu, J. Liu, O.
Ramstrom, J. Org. Chem., 2012, 77, 1457-1467; (b) X. L. Pan,
Y. X. Zhou, W. Liu, J. Y. Liu, H. Dong, Chem. Res. Chin. Univ.,
2013, 29, 551-555.
proposed to proceed through
a cyclic dioxolane-type
intermediate between a diol and Fe(acac)3 under base
conditions. The resulting selectivities exhibited the same
product pattern as for traditional dibutyl tinoxide-mediated
approaches. Despite the effects of acyl group migration during
the reaction, high selectivities were obtained in most cases
through suppressing the migration. Our method proved
straightforward, representing an affordable, green and benign
alternative to Taylor’s catalyst. Additionally, Fe(acac)3 is a
much less expensive catalyst, which at approximately is only
one-fourth (for the price per mole) as expensive as Taylor’s
catalyst.
6 (a) B. Ren, J. Lv, Y. Zhang, J. Tian, H. Dong, ChemCatChem,
2017,
Dong, Tetrahedron, 2016, 72, 1005-1010; (c) B. Ren, M. Y.
Wang, J. Y. Liu, J. T. Ge, H. Dong, ChemCatChem, 2015,
9, 950-953; (b) X. L. Zhang, B. Ren, J. T. Ge, Z. C. Pei, H.
7
,
761-765; (d) B. Ren, M. Rahm, X. L. Zhang, Y. X. Zhou, H.
Dong, J. Org. Chem., 2014, 79, 8134-8142; (e) Y. X. Zhou, M.
Rahm, B. Wu, X. L. Zhang, B. Ren, H. Dong, J. Org. Chem.,
2013, 78, 11618-11622; (f) Y. X. Zhou, O. Ramstrom, H. Dong,
Chem. Commun., 2012, 48, 5370-5372.
7 (a) H. F. Xu, Y. Zhang, H. Dong, Y. C. Lu, Y. X. Pei, Z. C. Pei,
Tetrahedron Lett, 2017, 58, 4039-4042; (b) H. F. Xu, B. Ren,
W. Zhao, X. T. Xin, Y. C. Lu, Y. X. Pei, H. Dong, Z. C. Pei,
Tetrahedron, 2016, 72, 3490-3499; (c) H. F. Xu, Y. C. Lu, Y. X.
Zhou, B. Ren, Y. X. Pei, H. Dong, Z. C. Pei, Adv. Synth. Catal.,
2014, 356, 1735-1740; (d) Y. X. Zhou, J. Y. Li, Y. J. Zhan, Z. C.
Pei, H. Dong, Tetrahedron, 2013, 69, 2693-2700.
Conflicts of interest
The authors declare no competing financial interest.
8
(a) B. Ren, O. Ramstrom, Q. Zhang, J. T. Ge, H. Dong,
Acknowledgements
Chem. Eur. J., 2016, 22, 2481-2486; (b) B. Ren, O. Ramstrom,
Q. Zhang, J. T. Ge, H. Dong, Chem. Eur. J., 2016, 22, 7662
This study was supported by the National Nature Science
Foundation of China (Nos. 21772049, 21272083). The authors
are also grateful to the staffs in the Analytical and Test Center
of School of Chemistry & Chemical Engineering at HUST for
support with the NMR instruments
9
(a) W. Muramatsu, J. M. William, O. Onomura, J. Org.
Chem., 2012, 77, 754-759; (b) Y. Demizu, Y. Kubo, H. Miyoshi,
T. Maki, Y. Matsumura, N. Moriyama, O. Onomura, Org. Lett.,
2008, 10, 5075-5077.
10 (a) I. H. Chen, K. G. M. Kou, D. N. Le, C. M. Rathbun, V. M.
Dong, Chem. Eur. J., 2014, 20, 5013-5018; (b) C. L. Allen, S. J.
Miller, Org. Lett., 2013, 15, 6178-6181; (c) C. Mazet, S.
Notes and references
1 (a) Y. Hu, K.Yu, L.-L. Shi, L. Liu, J.-J. Sui, D.-Y. Liu, B. Xiong,
J.-S. Sun, J. Am. Chem. Soc., 2017, 139, 12736-12744; (b) A. R.
Podilapu, S. S. Kulkarni, Org. Lett., 2017, 19, 5466-5469; (c) Y.
Toda, T. Sakamoto, Y. Komiyama, A. Kikuchi, H. Suga, ACS
Roseblade, V. Kohler, A. Pfaltz, Org. Lett., 2006, 8, 1879-1882;
(d) Y. Matsumura, T. Maki, S. Murakami, O. Onomura, J. Am.
Chem. Soc., 2003, 125, 2052-2053; (e) R. S. Dhiman, R. Kluger,
Org. Biomol. Chem., 2010, 8, 2006-2008; (f) E. V. Evtushenko,
Catal, 2017, 7, 6150-6154; (d) Z. Huang, G. Dong, Acc. Chem.
Carbohydr. Res., 2012, 359, 111-119; (g) E. V. Evtushenko, J.
Carbohydrate. Chem., 2015, 34, 41-54.
Res., 2017, 50, 465-471; (e) S. J. Danishefsky, Y. K. Shue, M. N.
Chang, C. H. Wong, Acc. Chem. Res., 2015, 48, 643-652; (f) Q.
J. Zhang, E. R. van Rijssel, M. T. C. Walvoort, H. S. Overkleeft,
G. A. van der Marel, J. D. C. Codee, Angew. Chem. Int. Ed.,
2015, 54, 7670-7673; (g) H. Dong, M. Rahm, T. Brinck, O.
Ramstrom, J. Am. Chem. Soc., 2008, 130, 15270-15271; (h) C.
C. Wang, J. C. Lee, S. Y. Luo, S. S. Kulkarni, Y. W. Huang, C. C.
Lee, K. L. Chang, S. C. Hung, Nature, 2007, 446, 896-899.
11 (a) G. Xiao, G. A. Cintron-Rosado, D. A. Glazier, B. Xi, C.
Liu, P. Liu, W. Tang, J. Am. Chem. Soc., 2017, 139, 4346-4349;
(b) X. Sun, H. Lee, S. Lee, K. L. Tan, Nature Chem, 2013, 5,
790-795; (c) E. Mensah, N. Camasso, W. Kaplan, P. Nagorny,
Angew. Chem. Int. Ed., 2013, 52, 12932-12936; (d) M. B.
Lauber, C.-G. Daniliuc, J. Paradies, Chem. Commun., 2013, 49
,
7409-7411;
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins