LETTER
Synthesis of Sulfonyl Chlorides
2169
Patai, S.; Rapport, Z., Eds.; John Wiley & Sons: New York,
991. (b) Green, T. W.; Wuts, P. G. M. Protective Groups in
Organic Chemistry; Wiley-Interscience: New York, 1999,
rd ed. (c) Kociensky, P. J. Protecting Groups; Thieme:
Vaghei, R.; Hemmati, S.; Mahmoodi, J. Synlett 2011, 2315.
(o) Liu, J.; Hou, S. L.; Xu, J. X. Phosphorus, Sulfur Silicon
Relat. Elem. 2011, 186, 2377. (p) Meng, F. H.; Chen, N.; Xu,
J. X. Sci. China Chem. 2012, 55, 2548. (q) Pu, Y.-M.;
Christesen, A.; Ku, Y.-Y. Tetrahedron Lett. 2010, 51, 418.
(r) Wright, S. W.; Hallstrom, K. N. J. Org. Chem. 2006, 71,
1080. (s) Huang, Y.; Bennett, F.; Verma, V.; Njoroge, F. G.;
MacCoss, M. Tetrahedron Lett. 2012, 53, 3203. (t) Watson,
R. J.; Batty, D.; Baxter, A. D.; Hannah, D. R.; Owen, D. A.;
Montana, J. G. Tetrahedron Lett. 2002, 43, 683.
1
3
New York, 1994.
(
2) (a) Owa, T.; Yoshino, H.; Okauchi, T.; Okabe, T.; Ozawa,
Y.; Sugi, N. H.; Yoshimatsu, K.; Nagasu, T.; Koyanagi, N.;
Kitoh, K. Bioorg. Med. Chem. Lett. 2002, 12, 2097.
(
b) McKew, J. C.; Lee, K. L.; Shen, M. W. H.; Thakker, P.;
Foley, M. A.; Behnke, M. L.; Hu, B.; Sum, F.-W.; Tam, S.;
Hu, Y.; Chen, L.; Kirincich, S. J.; Michalak, R.; Thomason,
J.; Ipek, M.; Wu, K.; Wooder, L.; Ramarao, M. K.; Murphy,
E. A.; Goodwin, D. G.; Albert, L.; Xu, X.; Donahue, F.; Ku,
M. S.; Keith, J.; Nickerson-Nutter, C. L.; Abraham, W. M.;
Williams, C.; Hegen, M.; Clark, J. D. J. Med. Chem. 2008,
(5) In the second method, thioacetates are always synthesized
from alkyl halides or mesylates and HSAc or KSAc. For
examples of chlorosulfonation of thioacetaes, see refs. 4g,
4o, 4p, 4s, and 4t. For a one-pot procedure, see ref. 4m.
(6) Chlorine and N-chlorosuccinimide were used to realize the
chlorosulfonation of S-alkyl isothiourea salts, see:
5
1, 3388. (c) Ting, P. C.; Aslanian, R. G.; Cao, J.; Kim, D.
W.-S.; Kuang, R.; Zhou, G.; Herr, R. J.; Zych, A. J.; Yang,
J.; Wu, H.; Zorn, N. PTC Int. Appl WO 2008115381, 2008.
(a) Johnson, T. B.; Sprague, J. M. J. Am. Chem. Soc. 1936,
58, 1348. (b) Sprague, J. M.; Johnson, T. B. J. Am. Chem.
Soc. 1937, 59, 1837. (c) Yang, Z. H.; Xu, J. X. Synthesis
2013, 45, 1675.
(d) Bonk, J. D.; Dellaria, J. F. Jr. PCT Int. Appl WO
2
005066169, 2005.
(
3) (a) Albright, J. D.; Benz, E.; Lanzilotti, A. E.; Goldman, L.
(7) (a) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27,
888. (b) Bal, B. S.; Childers, W. E.; Pinnick, H. W.
Chem. Commun. 1965, 413. (b) Fujita, S. Synthesis 1982,
4
23. (c) Barco, A.; Benetti, S.; Pollini, P.; Tadia, R.
Tetrahedron 1981, 37, 2091. (c) Dalcanale, E.; Montanari,
F. J. Org. Chem. 1986, 51, 567. (d) Kurti, L.; Czako, B.
Strategic Applications of Named Reactions in Organic
Synthesis; Elsevier Academic Press: Amsterdam, 2005.
(8) Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.;
Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.;
Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10, 31.
(9) Synthesis of 3e; Typical Procedure: (1) p-Chlorobenzyl
chloride 1e (0.805 g, 5 mmol) and thiourea (0.381 g, 5
mmol) were heated at reflux in EtOH (5 mL) for 1 h. After
removal of the solvent under vacuum S-p-chlorobenzyl
isothiouronium chloride (2e) was obtained as a white solid in
quantitative yield. (2) A 50-mL three-necked flask equipped
with a thermometer and a solid-addition funnel was
immersed in an ice-bath. To the flask was sequentially added
Synthesis 1974, 877. (d) Johary, N. S.; Owen, L. N. J. Chem.
Soc. 1955, 1307. (e) Su, D.-S.; Markowitz, M. K.; Murphy,
K. L.; Wan, B.-L.; Zrada, M. M.; Harrell, C. M.; O’Malley,
S. S.; Hess, J. F.; Ransom, R. W.; Chang, R. S.; Wallace, M.
A.; Raab, C. E.; Dean, D. C.; Pettibone, D. J.; Freidinger, R.
M.; Bonk, M. G. Bioorg. Med. Chem. Lett. 2004, 14, 6045.
(f) Brouwer, J. A.; Monnee, M. C. F.; Liskamp, R. M. J.
Synthesis 2000, 1579. (g) Kataoka, T.; Iwama, T.; Takagi, A.
Synthesis 1998, 423. (h) Blotny, G. Tetrahedron Lett. 2003,
4
4, 1499.
(
4) (a) Monnee, M. C. F.; Marijne, M. F.; Brouwer, A. J.;
Liskamp, R. M. J. Tetrahedron Lett. 2000, 41, 7991.
(
(
b) Humljan, J.; Gobec, S. Tetrahedron Lett. 2005, 46, 4069.
c) Kværnø, L.; Werder, M.; Hauser, H.; Carreira, E. M.
Org. Lett. 2005, 7, 1145. (d) Meinzer, A.; Breckel, A.;
Thaher, B. A.; Manicone, N.; Otto, H.-H. Helv. Chim. Acta
solid NaClO (1.61 g, 15 mmol, 85% purity), MeCN (10
2
mL), and then concd HCl (3 mL) during 1 min, keeping the
inner temperature below 10 °C. Then 2e was slowly added
through the solid-addition funnel to keep the inner
2
004, 87, 90. (e) Park, Y. J.; Shin, H. H.; Kim, Y. H. Chem.
Lett. 1992, 1483. (f) Kim, D. W.; Ko, Y. K.; Kim, S. H.
Synthesis 1992, 1203. (g) Nishiguchi, A.; Maeda, K.; Miki,
S. Synthesis 2006, 4131. (h) Surya Prakash, G. K.; Mathew,
T.; Panja, C.; Olah, G. A. J. Org. Chem. 2007, 72, 5847.
temperature below 20 °C. After the addition, the resulting
mixture was stirred for another 30 min, then H O (25 mL)
2
was added, and the resultant mixture was evaporated in
(i) Bahrami, K.; Khodaei, M. M.; Soheilizad, M. J. Org.
vacuum at 15 °C to remove MeCN. After addition of H O
2
Chem. 2009, 74, 9287. (j) Bahrami, K.; Khodaei, M. M.;
Soheilizad, M. Synlett 2009, 2773. (k) Sohmiya, H.; Kimura,
T.; Fujita, M.; Ando, T. Tetrahedron 1998, 54, 13737.
(100 mL), filtration on a Büchner funnel and drying under an
infrared lamp, 3e was afforded as colorless crystals. Yield:
6
c
1
1.080 g (96%); mp 91–93 °C (Lit. 90–92 °C). H NMR
(
2
l) Massah, A. R.; Sayadi, S.; Ebrahimi, S. RSC Adv. 2012,
, 6606. (m) Joyard, Y.; Papamicael, C.; Bohn, P.; Bischoff,
L. Org. Lett. 2013, 15, 2294. (n) Veisi, H.; Ghorbani-
(400 MHz, CDCl ): δ = 7.46–7.41 (m, 4 H), 4.83 (s, 2 H);
3
1
3
C NMR (101 MHz, CDCl ): δ = 136.8, 132.6, 129.5, 124.6,
3
70.0.
©
Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2165–2169