1398 J. Agric. Food Chem., Vol. 48, No. 4, 2000
Kubo et al.
Kubo, I.; Matsumoto, T. Potent insect antifeedants from the
African medicinal plant Bersama abyssinica. In Bioregula-
tors for Pest Control; Hedin, P. A., Ed.; ACS Symposium
Series 276; American Chemical Society: Washington, DC,
1985; pp 183-200.
rate of L-tyrosine to dopachrome by tyrosinase (Wood
and Schallreuter, 1991).
As a food additive, the long alkyl (>C10) chain gallates
act as an antioxidant and tyrosinase inhibitory agent
in food and prevent the browning process caused
enzymatically and nonenzymatically. After the gallates
are consumed together with the food to which they are
added as additives, the esters are hydrolyzed, at least
in part, to the original gallic acid and the corresponding
alcohols that are common plant components. It is
worthwhile to note that the liberated gallic acid still acts
as a potent antioxidant; for example, it scavenges
superoxide anion generated in living systems. Gallic
acid showed the most potent scavenging activity against
enzymic-generated superoxide anion by the xanthine
oxidase system, as well as the DPPH radical. It may be
useful for protecting oxidative damages in living sys-
tems. There is evidence that antioxidants are signifi-
cantly associated with reduced cancer risks (Yagi, 1987)
and other diseases (Garewal, 1997). The primary bio-
logical role of antioxidants is in preventing the damage
that reactive free radicals can cause to cells and cellular
components. Therefore, the antibrowning gallate esters
may be considered even as a cancer fighting diet
supplement or chemopreventive agent. This may be
supported by the recent report that gallic acid induced
apoptotic cell death in human promyelocytic leukemia
HL-60 cells (Sakagami et al., 1997). However, the
relevance of the results of in vitro experiments in
simplified systems to the in vivo situation should be
carefully considered when designing antioxidants for
addition to foods.
Kubo, I.; Kinst-Hori, I. Tyrosinase inhibitors from anise oil.
J . Agric. Food Chem. 1998, 46, 1268-1271.
Kumar, M.; Flurkey, W. H. Activity, isoenzymes and purity
of mushroom tyrosinase in commercial preparations. Phy-
tochemistry 1991, 30, 3899-3902.
Lerch, K. Molecular and active site structure of tyrosinase.
Life Chem. Rep. 1987, 5, 221-234.
Maeda, K.; Fukuda, M. In vitro effectiveness of several
whitening cosmetic components in human melanocytes. J .
Soc. Cosmet. Chem. 1991, 42, 361-368.
Masaki, H.; Okamoto, N.; Sakaki, S.; Sakurai, H. Protective
effects of hydroxybenzoic acids and their esters on cell
damage induced by hydroxyl radicals and hydrogen perox-
ides. Biol. Pharm. Bull. 1997, 20, 304-308.
Masamoto, Y.; Iida, S.; Kubo, M. Inhibitory effect of Chinese
crude drugs on tyrosinase. Planta Med. 1980, 40, 361-365.
Matsuo, K.; Kobayashi, M.; Takuno, Y.; Kuwajima, H.; Ito, H.;
Yoshida, T. Anti-tyrosinase activity constituents of Arcto-
staphylos uva-ursi. Yakugaku Zasshi 1997, 117, 1028-1032.
Mayer, A. M. Polyphenol oxidases in plants - recent progress.
Phytochemistry 1987, 26, 11-20.
Mayer, A. M.; Harel, E. Polyphenol oxidases in plants. Phy-
tochemistry 1979, 18, 193-215.
Mayer, A. M.; Harel, E. Phenoloxidases and their significance
in fruit and vegetables. In Food Enzymology; Fox, P. F., Ed.;
Elsevier: London, 1998; pp 373-398.
Mayumi, T.; Schiller, H. J .; Bulkley, G. B. Pharmaceutical
intervention for the prevention of post-ischemic reperfusion
injury. In Free Radical: From Basic Science to Medicine;
Poli, G., Albano, E., Dianzni, M. U., Eds.; Birkha¨user
Verlag: Switzerland, 1993; pp 438-457.
Mosher, D. B.; Pathak, M. A.; Fitzpatrick, T. B. Vitiligo,
etiology, pathogenesis, diagnosis, and treatment. In Update:
Dermatology in General Medicine; Fitzpatrick, T. B., Eisen,
A. Z., Wolff, K., Freedberg, I. M., Austen, K. F., Eds.;
McGraw-Hill: New York, 1983; pp 205-225.
Ogawa, M.; Perdigao, N. B.; Santiago, M. E.; Kozima, T. T.
On physiological aspects of black spot appearance in shrimp.
Bull. J pn. Soc. Sci. Fish. 1984, 50, 1763-1769.
Osawa, T.; Namiki, M. A novel type of antioxidant isolated
from leaf wax of Eucalyptus leaves. Agric. Biol. Chem. 1981,
45, 735-739.
Papas, A. M. Vitamin E: tocopherols and tocotrienols. In
Antioxidant Status, Diet, Nutrition, and Health; Papas, A.
M., Ed., CRC Press: Boca Raton, 1999; pp 189-230.
Passi, S.; Nazzaro-Porro, M. Molecular basis of substrate and
inhibitory specificity of tyrosinase: phenolic compounds. Br.
J . Dermatol. 1981, 104, 659-665.
Pifferi, P. G.; Baldassari, L.; Cultrera, R. Inhibition by car-
boxylic acids of an o-diphenol oxidase from Prunus avium
fruits. J . Sci. Food Agric. 1974, 25, 263-270.
Pomeranz; S. H.; Warner, M. C. 3,4-Dihydroxy-L-phenylalanine
as the tyrosinase cofactor. J . Biol. Chem. 1967, 242, 5308-
5314.
Prota, G. Melanins and Melanogenesis; Academic Press: San
Diego, 1992.
Sa´nchez-Ferrer, A.; Rodr´ıguez-Lo´pez, J . N.; Garcia-Ca´novas,
F.; Garc´ıa-Carmona, F. Tyrosinase: a comprehensive review
of its mechanism. Biochim. Biophys. Acta 1995, 1247, 1-11.
Sakagami, H.; Satoh, K.; Hatano, T.; Yoshida, T.; Okuda, T.
Possible role of radical intensity and oxidation potential for
gallic acid induced apoptosis. Anticancer Res. 1997, 17, 377-
380.
LITERATURE CITED
Andrawis, A.; Kahn, V. Ability of various chemicals to reduce
copper and to inactivate mushroom tyrosinase. J . Food
Biochem. 1990, 14, 103-115.
Aruoma, O. I.; Murcia, A.; Butler, J .; Halliwell, B. Evaluation
of the antioxidant and prooxidant actions of gallic acid and
its derivatives. J . Agric. Food Chem. 1993, 41, 1880-1885.
Blois, M. S. Antioxidant determination by the use of a stable
free radical. Nature 1958, 181, 1199-1200.
Conrad, J . S.; Dawso, S. R.; Hubbard, E. R.; Meyers, T. E.;
Strothkamp, K. G. Inhibitor binding to the binuclear active
site of tyrosinase: temperature, pH, and solvent deuterium
isotope effects. Biochemistry 1994, 33, 5739-5744.
Friedman, M. Food browning and its prevention: an overview.
J . Agric. Food Chem. 1996, 44, 631-653.
Garewal, H. S. Antioxidants and Disease Prevention; CRC
Press: Boca Raton, 1997.
Golan-Goldhirsh, A.; Whitaker, J . R. Kcat inactivation of
mushroom polyphenol oxidase. J . Mol. Catal. 1985, 32, 141-
147.
Gunckel, S.; Santander, P.; Cordano, G.; Ferreira, J .; Munoz,
S.; Nunez-Vergara, L. J .; Squella, J . A. Antioxidant activity
of gallates: an electrochemical study in aqueous media.
Chem. Biol. Inter. 1998, 114, 45-59.
Haraguchi, H.; Ishikawa, H.; Sanchez, Y.; Ogura, T.; Kubo,
Y.; Kubo, I. Antioxidative constituents in Heterotheca inu-
loides. Bioorg. Med. Chem. 1997, 5, 865-871.
J anovitz-Klapp, A. H.; Richard, F. C.; Goupy, P. M.; Nicolas,
J . J . Kinetic studies on apple polyphenol oxidase. J . Agric.
Food Chem. 1990, 38, 1437-1441.
Kahn, V.; Andrawis, A. Inhibition of mushroom tyrosinase by
tropolone. Phytochemistry 1985, 24, 905-908.
Kubo, I. Tyrosinase inhibitors from plants. In Phytochemicals
for Pest Control; Hedin, P., Hollingworth, R., Masler, E.,
Miyamoto, J ., Thompson, D., Eds.; ACS Symposium Series
658; American Chemical Society: Washington, DC, 1997;
pp 310-326.
Sayre, L. M.; Nadkarni, D. V. Direct conversion of phenols to
o-quinones by copper(I) dioxygen. Questions regarding the
monophenolase activity of tyrosinase mimics. J . Am. Chem.
Soc. 1994, 116, 3157-3158.
Tanford, C. The Hydrophobic Effect: Formation of Micelles and
Biological Membranes, 2nd ed.; J ohn Wiley & Sons: New
York, 1980.