her collaborators at Oregon Health Science University are gratefully acknowledged. This research did not
receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References and Notes:
1. Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 26, 517.
2. Young, I. S.; Thornton, P. D.; Thompson, A. Nat. Prod. Rep. 2010, 27, 1801.
3. Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.
4. Meketa, M. L.; Weinreb, S. M. Org. Lett. 2006, 8, 1443.
5. Riley, A. P.; Day, V. W.; Navarro, H. A.; Prisinzano, T. E. Org. Lett. 2013, 15, 5936.
6. (a) Burkhold, P. R.; Pfister, R. M.; Leitz, F. H. Appl. Microbiol. 1966, 14, 649. (b) Lovell, F. M. J.
Am. Chem. Soc. 1966, 88, 4510.
7. Fehér, D.; Barlow, R.; McAtee, J.; Hemscheidt, T. K. J. Nat. Prod. 2010, 73, 1963.
8. Martin, R.; Risachar, C.; Barthel, A.; Jäger, A.; Schmidt, A. W.; Richter, S.; Böhl, M.; Chinsalapudi,
K.; Manstein, D. J.; Gutzeit, H. O.; Knölker, H. J. Eur. J. Org. Chem. 2014, 4487.
9. (a) Schwalm, C. S.; de Castro, I. B. D.; Ferrari, J.; de Oliveira, F. L.; Aparicio, R.; Correia, C. R. D.
Tetrahedron Lett. 2012, 53, 1660. (b) Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031. (c) Hanessian, S.;
Kaltenbronn, J. S. J. Am. Chem. Soc. 1966, 88, 4509.
10. (a) Agarwal, V.; El Gamal, A. A.; Yamanaka, K.; Poth, D.; Kersten, R. D.; Schorn, M.; Allen, E. E.;
Moore, B. S. Nat. Chem. Biol. 2014, 10, 640. (b) El Gamal, A.; Vinayak Agarwal, V.; Diethelm, S.;
Rahman, I.; Schorn, M. A.; Sneed, J. M.; Louie, G. V.; Whalen, K. E.; Mincer, T. J.; Noel, J. P.; Paul,
V. J.; Moore, B. S. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3797. (c) El Gamal, A.; Agarwal, V.;
Rahman, I.; Moore, B. S. J. Am. Chem. Soc. 2016, 138, 13167.
11. Schmidt, B.; Riemer, M. J. Org. Chem. 2014, 79, 4104.
12. Handy, S. T.; Bregman, H.; Lewis, J.; Zhang, X. L.; Zhang, Y. N. Tetrahedron Lett. 2003, 44, 427.
13. ApSimon, J. W.; Durham, D. G.; Rees, A. H. J. Chem. Soc. Perkin Trans. I 1978, 1588.
14. Hanefeld, U.; Floss, H. G.; Laatsch, H. J. Org. Chem. 1994, 59, 3604.
15. Martin, R.; Jäger, A.; Böhl, M.; Richter, S.; Fedorov, R.; Manstein, D. J.; Gutzeit, H. O.; Knölker, H.
J. Angew. Chem. Int. Ed. 2009, 48, 1.
16. Experimental Procedures: Materials and Methods. The SPhos Pd G2 and XPhos Pd G2 catalysts,
N-Boc-pyrrole-2-boronic acid MIDA ester, iodophenol, and CyJohnPhos were purchased from
Sigma-Aldrich. Other reagents and solvents were obtained from various commercial sources. All
solvents were deoxygenated by passing a stream of nitrogen gas immediately before use. All
reactions were carried out under a nitrogen atmosphere introduced via evacuation by an
aspirator and a nitrogen balloon. MS data were obtained on an ABSciex 3200 QTrap mass
spectrometer. 1H and 13C NMR spectra were obtained on Bruker Avance III 500 MHz
spectrometer equipped with a 5mm BBO probe in CDCl3. Chemical shifts are reported relative to
residual protonated chloroform (δ 7.26) for 1H NMR and chloroform (δ 77.16) for 13C NMR.
Infrared spectra were obtained on Thermo-Fischer Nicolet iS10 FT-IR spectrometer. Thin layer
chromatography analysis was performed using EMD Millipore silica gel 60 F254 aluminum-backed
TLC plates.
Representative Protocol for synthesis of 2-phenyl-1H-pyrrole (5).
The small conical vial containing SPhos Pd G2 (4.5 mg, 0.0062 mmol) was charged with THF (0.5
mL). Upon stirring with a magnetic stirrer for 10 minutes at rt under N2, 2-iodophenol (13 mg,
0.059 mmol), N-Boc-pyrrole-2-boronic acid MIDA ester (20 mg, 0.062 mmol), and an aqueous 4
M KOH solution (0.124 mL, 0.496 mmol) were added successively and the vial sealed with a
septum lid. Immediately, the conical vial was placed in a sand bath preheated to 55 °C. While
the temperature of the reaction mixture climbed to the sand bath temperature, excessive
pressure was relieved twice by puncturing the septum with a needle connected to a balloon