ChemCatChem
10.1002/cctc.201601362
FULL PAPER
Competitividad (CTQ2015-66624-P) is acknowledged. We also
appreciated the generous gift of graphene based catalysts from
NanoInnova Technologies S. L. and Applynano Solutions S. L.
[10] R. R. Naredla, D. A. Klumpp, Chem. Rev. 2013, 113, 6905-6948.
[
11] a) C. J. Collins, Q. Rev. Chem. Soc. 1960, 14, 357-377. b) B. Rickborn
in Comprehensive Organic Synthesis (Eds.; B. M. Trost, I. Fleming),
Pergamon Press, Oxford, 1991, pp. 721-732. c) J. A. Berson, Angew.
Chem. 2002, 114, 4849-4854; Angew. Chem. Int. Ed. 2002, 41, 4655-
4660; d) K. Muñiz in Comprehensive Organic Synthesis, 2nd ed. (Eds.:
P. Knochel, G. A. Molander), Elsevier, Amsterdam, 2014, pp. 741-756.
12] a) Y. Kita, Y. Yoshida, S. Mihara, A. Furukawa, K. Higuchi, D. Fang, H.
Fujioka, Tetrahedron 1998, 54, 14689-14704; b) V. Bhushan, S.
Chandrasekaran, Chem. Lett. 1982, 1537-1538.
Keywords: Graphene Oxide • Pinacol Rearrangement • Allylic
Substitution • Carbocatalysis • Green Chemistry
[
[
[
1]
a) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.
V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666-669;
b) J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J.
Booth, S. Roth, Nature 2007, 446, 60-63; c) K. S. Novoselov, D. Jiang,
Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S.
Boebinger, P. Kim, A. K. Geim, Science 2007, 315, 1379-1379; d) L. A.
Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S.
Novoselov, A. K. Geim, Science 2008, 320, 356-358; e) M. J. Allen, V.
C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132-145; f) X. Huang, X.
Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666-686; g) V.
Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C.
Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156-
13] a) A. Molnár, I. Bucsi, M. Bartók, Stud. Surf. Sci. Catal. 1988, 41, 203-
210. b) T. Wirth, Angew. Chem. 1996, 108, 65-67; Angew. Chem. Int.
Ed. Engl. 1996, 35, 61-63. c) C. P. Bezouhanova, F. A. Jabur, J. Mol.
Catal. 1994, 87, 39-46. d) S. -Y. Chena, J.-F. Leeb, S. Cheng, J. Catal.
2
010, 270, 196-205.
14] a) F. A. Jabur, V. J. Penchev, C. P. Bezoukhanova, Chem. Commun.
994, 1591-1592. b) M. Hsiena, H.-T. Sheua, T. Leea, S. Chenga, J.-F.
[
1
Lee, J. Mol. Catal. A-Chem. 2002, 181, 189-200.
[15] a) S. S. Nametkin, Ann. 1923, 432, 207; b) H. Henecka, Houben-Weyl
1955, 4/2, 16.
[
16] Different metal oxides have been proposed as effective catalysts for the
retro-pinacol coupling: Mn: S. Riaño, D. Fernández, L. Fadini, Catal.
Commun. 2008, 9, 1282-1285; Fe: T. Okamoto, K. Sasaki, S. Oka, J.
Am. Chem. Soc. 1988, 110, 1187-1196.
6214; h) K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G.
Schwab, K. Kim, Nature 2012, 490, 192-200; i) Graphene Synthesis,
Properties, and Phenomena, (Eds.: C. N. R. Rao, A. K. Sood) Wiley-
VCH, Weinheim, 2013; j) V. Palermo, Chem. Commun. 2013, 49, 2848-
[17] a) H. K. Kadam, S. Khan, R. A. Kunkalkar, S. G. Tilve, Tetrahedron Lett.
2
857.
J. Pyun, Angew. Chem. 2011, 123, 46-48; Angew. Chem. Int. Ed. 2011,
0, 46–48.
D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev.
010, 39, 228-240.
2013, 54, 1003-1007; b) G. A. Sereda, V. B. Rajpara, R. L. Slaba,
[
[
[
2]
3]
4]
Tetrahedron 2007, 63, 8351-8357; c) K. L. Dhumaskara, S. N. Meenab,
S. C. Ghadib, S. G. Tilvea, Bioorg. Med. Chem. Lett. 2014, 24, 2897-
5
2
899; d) K. N. Nandeesh, G. M. Raghavendra, C. N. Revanna, T. A.
Vijay, K. S. Rangappa, K. Mantelingu, Synthetic Commun. 2014, 44,
103-1110.
2
a) D. R. Dreyer, C. W. Bielawski, Chem. Sci. 2011, 2, 1233-1240; b) B.
F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54-75. c) A. Schaetz,
M. Zeltner, W. J. Stark, ACS Catal. 2012, 2, 1267-1284; d) C. Su, K. P.
Loh, Acc. Chem. Res. 2013, 46, 2275-2285; e) B. Garg, T. Bisht, Y.-C.
Ling, Molecules 2014, 19, 14582-14614; f) S. Navalon, A.
Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Rev. 2014, 114, 6179-
1
[
18] GiO was provided by Applynano Solutions S. L. where it has been fully
characterized by FTIR, Transmission Electron Microscopy (TEM),
Elemental analysis, and X-Ray Photoelectron Spectroscopy (XPS).
19] N. E. Leadbeater, Nat. Chem. 2010, 2, 1007–1009.
[
[
20] XPS analysis of the material after 4 reaction cycles showed an O/C
atomic ratio of 0.186.
6
212; g) C. K. Chua, M. Pumera, Chem. Eur. J. 2015, 21, 12550–
2562; h) H. Hu, J. H. Xin, H. Hu, X. Wang, Y. Kong, Appl. Catal. A-
1
[
21] Graphene oxide is known to be unstable with regard to reductive partial
deoxygenation, see: C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014,
Gen. 2015, 492, 1-9.
[
5] a) D. W. Boukhvalov, D. R. Dreyer, C.W. Bielawski, Y. W. Son,
ChemCatChem 2012, 4, 1844-1849; b) D. R. Dreyer, A. D. Todd, C. W.
Bielawski, Chem. Soc. Rev. 2014, 43, 5288-5301; c) H. P. Jia, D. R.
Dreyer, C. W. Bielawski, Tetrahedron 2011, 67, 4431-4434; d) H. P.
Jia, D. R. Dreyer, C. W. Bielawski, Adv. Synth. Catal. 2011, 353, 528-
43, 291– 312.
[
[
[
[
[
22] N. Oger, Y. F. Lin, C. Labrugère, E. Le Grognec, F. Rataboul, F. –X.
Felpin, Carbon 2016, 96, 342-350.
23] Acetophenone (15%) was also detected by GC analysis in the crude
reaction mixture.
532; e) D. R. Dreyer, H. P. Jia, C. W. Bielawski, C. W. Angew. Chem.
24] According to Table 1, the sulfur content of the employed GO in a typical
Int. Ed. 2010, 49, 6813-6816; f) A. Dhakshinamoorthy, M. Alvaro, M.
Puche, V. Fornes, H. Garcia, ChemCatChem 2012, 4, 2026-2030; g) A.
Dhakshinamoorthy, M. Alvaro, P. Concepción, V. Fornes, H. Garcia,
Chem. Commun. 2012, 48, 5443-5445.
-
4
experiment (4.85 mg, 20 wt%) is: 12×10 mmols, 1.2 mol%.
25] The formation of oxides has been previously observed during
rearrangement of sterically hindered diols, see ref 11a.
26] a) J. Meinwald, S. S. Labana, M. S. Chadha, J. Am. Chem. Soc. 1963,
[
[
6]
7]
D. R. Dreyer, C. W. Bielawski, Adv. Funct. Mater. 2012, 22, 3247-3253.
b) D. R. Dreyer, K. A. Jarvis, P. J. Ferreira, C. W. Bielawski, Polym.
Chem. 2012, 3, 757-766. c) B. Konkena, S. Vasudevan, S. J. Phys.
Chem. Lett. 2012, 3, 867-872.
8
5, 582-585; b) B. Rickborn in Comprehensive Organic Synthesis;
Eds.; B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, pp. 733-
75.; c) Comprehensive Organic Name Reactions and Reagents (Ed.:
(
7
Z. Wang), Wiley, Hoboken, NJ, 2010; pp. 1880-1882.
See, for instance: a) A. V. Kumar, K. R. Rao, Tetrahedron Lett. 2011,
[
27] For recent reviews about free allylic alcohols in substitution reactions,
see: a) J. Muzart, Eur. J. Org. Chem. 2007, 3077-3089; b) J. Muzart,
Tetrahedron 2008, 64, 5815-5849; c) E. Emer, R. Sinisi, M. Guiteras-
Capdevila, P. Petruzzielo, F. De Vicentiis, P. G. Cozzi, Eur. J. Org.
Chem. 2011, 647-666; d) B. Biannic, A. Aponick, Eur. J. Org. Chem.
52, 5188-5191. b) H. Wang, T. Deng, Y. Wang, X. Cui, Y. Qi, X. Mu, X.
Hou, Y. Zhu, Green Chem. 2013, 15, 2379-2383. c) D. R. Dreyer, K. A.
Jarvis, P. J. Ferreira, C. W. Bielawski, Macromolecules 2011, 44, 7659-
7667.
[
8]
9]
M. Gómez-Martínez, E. Buxaderas, I. M. Pastor, D. A. Alonso, J. Mol.
Catal-Chem. 2015, 404, 1-7.
2011, 6605-6617; e) A. Baeza, C. Nájera, Synthesis 2014, 26, 25-34.
[
28] For other contributions of the group in allylic substitution reaction onto
free allylic alcohols, see: a) P. Trillo, A. Baeza, C. Nájera, Eur. J. Org.
Chem. 2012, 2929-2934; b) P. Trillo, A. Baeza, C. Nájera, J. Org. Chem.
[
GO and GO-CO
2
H
catalysts were provided by NanoInnova
Technologies S.L and they have been fully characterized by FTIR,
Scanning Electron Microscopy (SEM), Elemental analysis, X-Ray
Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Zeta-
2
012, 77, 7344-7354.
[29] Only a few publications have reported this reaction in H
For example, see: a) S. Shirakawa, S. Shimizu, Synlett 2008, 1539-
13
2
O as solvent.
potential, and solid state C-NMR.
This article is protected by copyright. All rights reserved.