March 2010
425
Fig. 4. UV Chromatogram of Glucuronidation of 4NP on Immobilized Microsome Column
Mobile phase: 10 mM sodium phosphate buffer in D O (pD 7.4) containing 10 mM magnesium chloride; flow rate: 0.5 ml/min; detection: 320 nm; column temperature: 37 °C.
2
Peaks: 1, 4NP glucuronide; 2, 4NP.
1
Fig. 5. H-NMR Spectra of (a) 4NP and (b) 4NP Glucuronide
curonide formed from immobilized dog microsomes. Two enzymatic reaction and the subsequent identification of the
micromoles of UDPGA as a coenzyme was injected onto the products using simple compounds. The IMER-LC-NMR sys-
column after injection of 1 mmol 4-nitrophenol (4NP) as sub- tem should be applicable for the structural identification of
strate at the mobile phase rate of 0.5 ml/min, and the flow various drug metabolites by selecting the appropriate column
was stopped after 55 s, enabling the substrate and UDPGA to and enzyme.
be in contact with the microsome immobilized within the
Acknowledgement We thank Takashi Kitade of M&S Instruments for
many helpful discussions.
column. After 10 min, the mobile phase flow was restarted at
1
0
.5 ml/min (Fig. 4). For identification, analyses of the H-
NMR of 4NP (peak 2) and 4NP glucuronide (peak 1) and References
1
1
H– H COSY of 4NP glucuronide were performed (Fig. 5).
1) Kiba N., Goto Y., Furusawa M., J. Chromatogr., 620, 9—13 (1993).
2
)
Matsumoto K., Takahashi M., Takiyama N., Misaki H., Matsuo N.,
Murano S., Yuki H., Clin. Chim. Acta, 216, 135—143 (1993).
Alebi c´ -Kolbah T., Félix G., Wainer I. W., Chromatographia, 35, 264—
The NMR spectra of the product supported glucuronidation
with the presence of resonances at 5.25 ppm, 3.65 ppm,
3
3)
.63 ppm, 3.60 ppm and 3.94 ppm (compared with 4NP), at-
2
68 (1993).
tributable to protons H1ꢀ, H2ꢀ, H3ꢀ, H4ꢀ and H5ꢀ of glu-
curonic acid, respectively. The H1ꢀ anomeric proton at
4) Kim H. S., Wainer I. W., J. Chromatogr. B, 823, 158—166 (2005).
5) Alebi c´ -Kolbah T., Wainer I. W., Chromatographia, 37, 608—612
(1993).
5.25 ppm showed a coupling constant of 7.3 Hz, which is the
6
7
)
)
Kamimori H., Konishi M., Anal. Sci., 17, 1085—1089 (2001).
Nicoli R., Bartolini M., Rudaz S., Andrisana V., Veuthey J.-L., J. Chro-
matogr. A, 1206, 2—10 (2008).
feature of diaxial coupling between H1ꢀ and H2ꢀ in the
1
2)
b-glucuronide.
Furthermore, the H2 and H6 of 4NP
(
6.71 ppm) was shifted downfield to 7.23 ppm by substitution
8) Lim C.-K., Lord G., Biol. Pham. Bull., 25, 547—557 (2002).
9) Dear G. J., Plumb R. S., Sweatman B. C., Ayrton J., Lindon J. C.,
Nicholson J. K., Ismail I. M., J. Chromatogr. B, 748, 281—293 (2000).
0) Feng W., Liu H., Chen G., Malchow R., Bennett F., Lin E., Pramanik
B., Chan T. M., J. Pharm. Biomed. Anal., 25, 545—557 (2001).
1) Elip M. V. S., Huskey S.-E. W., Zhu B., J. Pharm. Biomed. Anal., 30,
1431—1440 (2003).
2) Kamimori H., Ozaki Y., Okabayashi Y., Ueno K., Narita S., Anal.
Biochem., 317, 99—106 (2003).
3) Smallcombe S. H., Patt S. L., Keifer P. A., J. Magn. Reson. A, 117,
of the molecule. These data clarified the product to be a glu-
curonide attached to the position 1 of 4NP via the ether link-
age. As a result, the chemical structure of glucuronide as the
enzymatic reaction product could be clearly elucidated by
using IMER-LC-NMR without the need for authentic sam-
ples or isolation processes.
1
1
1
1
Conclusion
2
95—303 (1995).
Coupling of immobilized enzyme reactors with an LC- 14) Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F.
NMR system enabled precise and rapid structural characteri-
zation of the enzymatic reaction products without the need
for other commercially available authentic samples, chemi-
cally synthetic authentic samples or complicated isolation
procedures. In this report, we presented two examples of the
H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J.,
Klenk D. C., Anal. Biochem., 150, 76—85 (1985).
5) Kamimori H., Konishi M., Biomed. Chromatogr., 16, 61—67 (2002).
6) Hamachi I., Fujita A., Kunitake T., J. Am. Chem. Soc., 116, 8811—
1
1
8
812 (1994).