Oxidation of Substituted Cyclobutanones
Oxidation Reactions: A Practical Approach (Ed.: T. Katsuki),
Oxford University Press, Oxford, 2001, p. 214–226; c) S. M.
Roberts, P. W. H. Wan, J. Mol. Catal. B 1998, 4, 111–136. For
recent examples, see: d) M. T. Reetz, S. Wu, J. Am. Chem. Soc.
2009, 131, 15424–15432; e) C. Rodriguez, G. de Gonzalo,
D. E. T. Pazmino, M. W. Fraaije, V. Gotor, Tetrahedron: Asym-
metry 2009, 20, 1168–1173; f) C. Rodriguez, G. de Gonzalo,
D. E. T. Pazmino, M. W. Fraaije, V. Gotor, Tetrahedron: Asym-
metry 2008, 19, 197–203; g) C. Rodriguez, G. de Gonzalo,
M. W. Fraaije, V. Gotor, Tetrahedron: Asymmetry 2007, 18,
1338–1344; h) F. Rudroff, J. Rydz, F. H. Ogink, M. Fink, M. D.
Mihovilovic, Adv. Synth. Catal. 2007, 349, 1436–1444.
Typical Procedure for Asymmetric B–V Reaction of Racemic Bicy-
clic Cyclobutanones 6a Catalyzed by Chiral Phosphoric Acid 1p and
30% H2O2 as Oxidant: A 5-mL Schlenk tube was charged with 1p
(0.01 mmol), racemic cyclobutanone 6a (0.1 mmol), and CH2Cl2
(1 mL). The mixture was cooled and stirred at –40 °C before 30%
aqueous H2O2 (17 μL, 0.15 mmol) was added, and the resulting
mixture was stirred for 12–36 h at this temperature. After comple-
tion of the reaction, the residual H2O2 was quenched with aqueous
Na2SO3 (0.1 mL), and the normal lactone 7a and abnormal lactone
8a were isolated as a regioisomeric mixture by column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate, 6:1) in 99% yield.
The 7a/8a ratio was determined by comparison of the integration
[7] a) C. Paneghetti, R. Gavagnin, F. Pinna, G. Strukul, Organo-
metallics 1999, 18, 5057–5065; b) S. Murahashi, S. Ono, Y. Im-
ada, Angew. Chem. 2002, 114, 2472–2474; Angew. Chem. Int.
Ed. 2002, 41, 2366–2368; c) M. Colladon, A. Scarso, G.
Strukul, Synlett 2006, 3515–3520; d) A. Cavarzan, G. Bianch-
ini, P. Sgarbossa, L. Lefort, S. Gladiali, A. Scarso, G. Strukul,
Chem. Eur. J. 2009, 15, 7930–7939; e) G. Bianchini, A. Cavar-
zan, A. Scarso, G. Strukul, Green Chem. 2009, 11, 1517–1520.
There are also some reports on the use of a urea–hydrogen
peroxide adduct (UHP) as oxidant for catalytic asymmetric B–
V reactions, see, for examples: f) T. Uchida, T. Katsuki, Tetra-
hedron Lett. 2001, 42, 6911–6914; g) A. V. Malkov, F. Friscourt,
1
values of the relevant H NMR signals at δ = 5.28–5.33 ppm (7a)
and δ = 4.69 ppm (8a) for the isomeric mixture.[10e]
1
Mixture of Compounds 7a and 8a: H NMR (300 MHz, CDCl3): δ
= 7.23–7.29 (m), 5.28–5.33 (m), 4.69 (dd, J = 9.3, 6.3 Hz), 4.53 (dd,
J = 9.3, 1.2 Hz), 3.98–4.09 (m), 3.31–3.40 (m), 3.05 (dd, J = 18.0,
9.3 Hz), 2.75 (dd, J = 17.7, 1.2 Hz) ppm. The enantiomeric excess
was determined by chiral HPLC analysis on a Chiralpak OD col-
umn (hexane/iPrOH = 95:5, flow rate: 0.7 mL/min, λ = 214 nm),
tR = 38.3 min (minor) and 53.5 min (major) for the two enantio-
mers of 7a, respectively; tR = 35.7 min (major), 48.3 min (minor)
for the two enantiomers of 8a, respectively. The peak assignments
were made by comparison with chromatographs of the correspond-
ing racemic lactones. The absolute configurations for these isomers
were not assigned.
M. Bell, M. E. Swarbrick, P. Kocovský, J. Org. Chem. 2008,
ˇ
73, 3996–4003.
[8] a) S. Xu, Z. Wang, X. Zhang, X. M. Zhang, K. Ding, Angew.
Chem. 2008, 120, 2882–2885; Angew. Chem. Int. Ed. 2008, 47,
2840–2843. Chiral phosphoric acids have been established as
one type of extremely versatile organocatalysts in asymmetric
catalysis; for reviews, see: b) T. Akiyama, Chem. Rev. 2007, 107,
5744–5758; c) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007,
107, 5714–5743; d) M. Terada, Chem. Commun. 2008, 4097–
4112; e) D. Kampen, C. M. Reisinger, B. List, in: Asymmetric
Organocatalysis, Springer-Verlag Berlin, Berlin, 2010, vol. 291,
p. 395–456. For selected recent examples, see: f) S. Liao, B.
List, Angew. Chem. 2009, 121, 638–641; Angew. Chem. Int. Ed.
2009, 48, 628–631; g) M. Rueping, A. P. Antonchick, E. Su-
giono, K. Grenader, Angew. Chem. 2009, 121, 925–927; Angew.
Chem. Int. Ed. 2009, 48, 908–910; h) T. Akiyama, T. Katoh, K.
Mori, Angew. Chem. 2009, 121, 4290–4292; Angew. Chem. Int.
Ed. 2009, 48, 4226–4228; i) T. Yue, M.-X. Wang, D.-X. Wang,
G. Masson, J. Zhu, Angew. Chem. 2009, 121, 6845–6849; An-
gew. Chem. Int. Ed. 2009, 48, 6717–6721; j) Q. W. Zhang, C. A.
Fan, H. J. Zhang, Y. Q. Tu, Y. M. Zhao, P. Gu, Z. M. Chen,
Angew. Chem. 2009, 121, 8724–8726; Angew. Chem. Int. Ed.
2009, 48, 8572–8574; k) K. Mori, T. Katoh, T. Suzuki, T. Noji,
M. Yamanaka, T. Akiyama, Angew. Chem. 2009, 121, 9832–
9834; Angew. Chem. Int. Ed. 2009, 48, 9652–9654; l) M. Hat-
ano, K. Moriyama, T. Maki, K. Ishihara, Angew. Chem. 2010,
122, 3911–3914; Angew. Chem. Int. Ed. 2010, 49, 3823–3826;
m) V. N. Wakchaure, J. Zhou, S. Hoffmann, B. List, Angew.
Chem. 2010, 122, 4716–4718; Angew. Chem. Int. Ed. 2010, 49,
4612–4614; n) W. Zheng, L. Wojtas, J. C. Antilla, Angew. Chem.
Int. Ed., DOI: 10.1002/anie.201002972; o) N. Li, X.-H. Chen,
S.-M. Zhou, S.-W. Luo, J. Song, L. Ren, L.-Z. Gong, Angew.
Chem. Int. Ed. 2010, 49, DOI: 10.1002/anie.201001723; p) M.
Terada, H. Tanaka, K. Sorimachi, J. Am. Chem. Soc. 2009,
131, 3430–3431; q) Q. Gu, Z.-Q. Rong, C. Zheng, S.-L. You,
J. Am. Chem. Soc. 2009, 131, 4056–4057; r) L. Simn, J. M.
Goodman, J. Am. Chem. Soc. 2009, 131, 4070–4077; s) M. Lu,
D. Zhu, Y. P. Lu, X. F. Zeng, B. Tan, Z. J. Xu, G. F. Zhong, J.
Am. Chem. Soc. 2009, 131, 4562–4563; t) H. Liu, G. Dagousset,
G. Masson, P. Retailleau, J. P. Zhu, J. Am. Chem. Soc. 2009,
131, 4598–4599; u) M. Terada, Y. Toda, J. Am. Chem. Soc.
2009, 131, 6354–6355; v) C. Q. Li, B. Villa-Marcos, J. L. Xiao,
J. Am. Chem. Soc. 2009, 131, 6967–6969; w) Z.-Y. Han, H.
Xiao, X.-H. Chen, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131,
9182–9183; x) M. E. Muratore, C. A. Holloway, A. W. Pilling,
R. I. Storer, G. Trevitt, D. J. Dixon, J. Am. Chem. Soc. 2009,
131, 10796–10797; y) N. Momiyama, H. Tabuse, M. Terada, J.
Supporting Information (see also the footnote on the first page of
this article): Detailed experimental procedure and product charac-
terization for the catalytic asymmetric B–V oxidation of racemic
cyclobutanone 6.
Acknowledgments
Financial support from the National Natural Science Foundation
of China (grant number 20821002, 20923005), the Chinese Acad-
emy of Sciences, the Major Basic Research Development Program
of China (grant number 2010CB833300), and the Science and Tech-
nology Commission of Shanghai Municipality is gratefully ac-
knowledged.
[1] A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625–
3633.
[2] a) G. R. Krow, Org. React. 1993, 43, 251–798; b) M. Renz, B.
Meunier, Eur. J. Org. Chem. 1999, 737–750; c) G. Strukul, An-
gew. Chem. 1998, 110, 1256–1267; Angew. Chem. Int. Ed. 1998,
37, 1198–1209; d) C. Bolm, in: Advances in Catalytic Processes
(Ed.: M. P. Doyle), JAI Press, Greenwich, 1997, vol. 2, p. 43–
68.
[3] A. Gusso, C. Baccin, F. Pinna, G. Strukul, Organometallics
1994, 13, 3442–3451.
[4] C. Bolm, G. Schlingloff, K. Weickhardt, Angew. Chem. 1994,
106, 1994–1946; Angew. Chem. Int. Ed. Engl. 1994, 33, 1848–
1849.
[5] For reviews, see: a) C. Bolm, O. Beckmann, in: Comprehensive
Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yam-
amoto), Springer, Berlin, 1999, vol. 2, p. 803–810; b) C. Bolm,
C. Palazzi, O. Bechmann, in: Transition Metals for Organic
Chemistry: Building Blocks and Fine Chemicals (Eds.: M. Beller,
C. Bolm), Wiley-VCH, Weinheim, 2nd ed., 2004, vol. 2, p. 267–
274; c) C. Bolm, in: Asymmetric Synthesis – The Essentials
(Eds.: M. Christmann, S. Bräse), Wiley-VCH, Weinheim, 2006,
p. 57–61; see also ref.[2c]
[6] For reviews, see: a) M. D. Mihovilovic, Curr. Org. Chem. 2006,
10, 1265–1287; b) V. Alphand, R. Furstoss, in: Asymmetric
Eur. J. Org. Chem. 2011, 110–116
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
115