T. Nabeshima et al. / Tetrahedron Letters 53 (2012) 6182–6185
6185
t-Bu
+
BF4–
References and notes
1.
(a) Vögtle, F. Supramolecular Chemistry; Wiley: New York, 1991; (b) Cargill
Thompson, A. M. W. Coord. Chem. Rev. 1997, 160, 1–52; (c) Hofmeier, H.;
Schubert, U. S. Chem. Soc. Rev. 2004, 33, 373–399; (d) Eryazici, I.; Moorefield, C.
N.; Newkome, G. R. Chem. Rev. 2008, 108, 1834–1895; (e) Constable, E. C. Coord.
Chem. Rev. 2008, 252, 842–855; (f) Yam, V. W.-W.; Wong, K. M.-C. Chem.
Commun. 2011, 47, 11579–11592.
t-Bu
t-Bu
N
N
N
Pt
2.
(a) Sommer, R. D.; Rheingold, A. L.; Goshe, A. J.; Bosnich, B. J. Am. Chem. Soc.
2001, 123, 3940–3952; (b) Goshe, A. J.; Steele, I. M.; Ceccarelli, C.; Rheingold, A.
L.; Bosnich, B. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4823–4829; (c) Goshe, A. J.;
Steele, I. M.; Bosnich, B. J. Am. Chem. Soc. 2003, 125, 444–451.
(a) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons,
1
0
3
4
.
.
2009; (b) Nabeshima, T. Bull. Chem. Soc. Jpn. 2010, 83, 969–991.
Scheme 3.
(a) Lo, H.-S.; Yip, S.-K.; Wong, K. M.-C.; Zhu, N.; Yam, V. W.-W. Organometallics
2
2
006, 25, 3537–3540; (b) Tanaka, Y.; Wong, K. M. C.; Yam, V. W.-W. Chem. Sci.
012, 3, 1185–1191.
5
.
(a) Howe-Grant, M.; Lippard, S. J. Biochemistry 1979, 18, 5762–5769; (b) Wang,
A. H. J.; Nathans, J.; van der Marel, G.; van Boom, J. H.; Rich, A. Nature 1978, 276,
bond is labile enough to be cleaved by the carboxylate anion.
However, the acetylide-based Pt cleft is stable enough even in
the presence of the anionic guests because of inertness of the
acetylide–platinum bonds. Binding studies with three aromatic
carboxylates bearing a pyrene unit showed an apparent selectivity
471–474.
6. (a) McFadyen, W. D.; Wakelin, L. P. G.; Roos, I. A. G.; Hillcoat, B. L. Biochem. J.
1986, 238, 757–763; (b) McFadyen, W. D.; Wakelin, L. P. G.; Roos, I. A. G.;
Hillcoat, B. L. Biochem. J. 1987, 242, 177–183; (c) Kurosaki, H.; Yamakawa, N.;
Sumimoto, M.; Kimura, K.; Goto, M. Bioorg. Med. Chem. Lett. 2003, 13, 825; (d)
Glover, P. B.; Ashton, P. R.; Childs, L. J.; Rodger, A.; Kercher, M.; Williams, R. M.;
De Cola, L.; Pikramenou, Z. J. Am. Chem. Soc. 2003, 125, 9918–9919.
for 1-pyrenecarboxylate (K
etate (K = 220 M ) is higher than 1-pyrenebutyrate (K = 78 M ).
a a
a
= 540 M–1). The affinity to 1-pyreneac-
ꢁ1
–1
7
.
(a) Yam, V. W.-W.; Tang, R. P.-L.; Wong, K. M.-C.; Cheung, K.-K. Organometallics
001, 20, 4476–4482; (b) Yam, V. W.-W.; Wong, K. M.-C.; Zhu, N. J. Am. Chem.
Soc. 2002, 124, 6506–6507.
This result suggested that the short distance between the
aromatic core and carboxylate moiety increases the electrostatic
2
16
interactions. For compound 10, a much lower binding constant
8. Yang, L.; Wimmer, F. L.; Wimmer, S.; Zhao, J.; Braterman, P. S. J. Organomet.
Chem. 1991, 525, 1–8.
9
–
1
a
(K = 40 M ) for 1-pyreneacetate was obtained, when compared
.
Hasegawa, Y.; Trokowski, R.; Yamamura, M.; Nabeshima, T. Abstract, The 89th
Annual Meeting of the Chemical Society of Japan 3PB-131, March, 2009.
to that in the cleft 1a (Scheme 3). Thus, the two terpyridine Pt units
of 1a play an important role for the stronger binding.
10. Compound 1a: 1H NMR (400 MHz, DMSO-d
) d 1.43 (s, 36H), 1.53 (s, 18H), 7.48
dd, J = 7.5 Hz, J = 7.5 Hz, 2H), 7.54 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H),
6
(
The guest recognition was also confirmed by UV–vis and emis-
sion spectroscopy (Fig. S19 and S20). The cleft 1a showed an
absorption band in the 400–500 nm region, which was originally
attributed to the charge transfer (CT) excitation from an occupied
orbital of the Pt–acetylide bond to an unoccupied orbital delocal-
7
4
.69 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H), 7.84 (s, 2H), 7.89 (d, J = 5.8 Hz,
195
H), 7.96 (s, 1H), 8.71 (s, 4H), 8.73 (s, 4H), 9.07 (d, J = 5.8 Hz, 4H,
Pt satellites
13
were not observed due to broadening.); C NMR (100 MHz, CD CN) 28.9 (CH ),
3
3
2
(
1
9.2 (CH
CH), 124.2 (CH), 124.5 (CH), 124.8 (CH), 127.0 (C), 128.1 (CH), 128.6 (CH),
29.7 (CH), 129.9 (CH), 138.6 (C), 138.9 (C), 153.1 (CH), 153.2 (C), 157.7 (C),
3
), 35.5 (C), 36.5 (C), 97.9 (C), 102.7 (C), 120.6 (CH), 122.4 (CH), 123.3
1
8
ized on terpyridine. The CT band decreased in the presence of
-pyrenecarboxylate, while the UV–vis spectra of 10 showed al-
165.7 (C), 166.7 (C); IR (KBr)
m
2116 cmꢁ1 (C„C); ESI–MS m/z 734.30
Pt O = C76 OPt : 1C,
ꢂH
2+; Anal. Calcd for
C
H
H
84
1
[Mꢁ2BF
4
]
76
82
N
6
B
2
F
8
2
2
6
N B
2
F
8
2
54.95; H, 5.10; N, 5.06. Found: C, 54.60; H, 5.12; N, 4.98. Compound 1b:
H
most no change by the addition of the same guest. A degassed solu-
tion of 1a showed an emission (ca. 600 nm) with a 3.7% quantum
yield. The emission is attributed to phosphorescence because the
emission intensity was lowered in an aerated solution. The emis-
sion intensity decreased upon the addition of 1-pyrenecarboxylate.
These spectroscopic results again suggested the host–guest
complexation.
We synthesized stable molecular clefts 1 consisting of inert Pt–
acetylide bonds. 1a captured large electron-rich aromatic com-
pounds. Interestingly, the anionic aromatic guests were bound
NMR (400 MHz, DMSO-d ) d 7.46 (d, J = 7.4 Hz, 2H), 7.50–7.53 (m, 6H), 7.72 (t,
6
J = 7.7 Hz, 1H), 7.76 (d, J = 7.4 Hz, 2H), 7.85 (d, J = 8.6 Hz, 2H), 8.11–8.13 (m,
6H), 8.24 (s, 1H), 8.29 (d, J = 8.3 Hz, 4H), 8.40 (br s, 4H), 8.47 (t, J = 7.8 Hz, 1H),
8
1
.55(d, J = 7.8 Hz, 4H); 13C NMR (100 MHz, DMSO-d
6
) d 98.3 (C), 102.6 (C),
24.7 (CH), 124.8 (CH), 125.5 (CH), 125.6 (CH), 126.2 (CH), 127.1 (C), 129.0
(
CH), 129.5 (CH), 129.9 (CH), 130.0 (CH), 130.7 (CH), 139.7 (C), 139.9 (C), 141.8
(CH), 142.1 (CH), 152.9 (C), 153.3 (CH), 157.7 (C); ESI–MS m/z 566.06
2
+
[
Mꢁ2BF
4
] .
1
1
1. Han, P.; Zhang, H.; Qiu, X.; Ji, X.; Gao, L. J. Mol. Catal. A: Chem. 2008, 295, 57–67.
2. Leung, S. Y.-L.; Tam, A. Y.-Y.; Tao, C.-H.; Chow, H. S.; Yam, V. W.-W. J. Am. Chem.
Soc. 2012, 134, 1047–1056.
1
1
1
3. Based on a monomer-dimer equilibrium model, the dimerization constant,
2
–1
K
2
dim = [(1a) ]/[1a] , was determined to be 758 M (Fig. S3).
more strongly by 1a due to the electrostatic interactions,
p–p
3
4. No self-recognition of 1a in chloroform-d/acetonitrile-d (3:1, v/v) was clarified
interactions, and the stable cleft scaffold. We are currently investi-
gating larger supramolecular architectures based on the stable Pt–
acetylide bonds.
by the variable-concentration NMR spectra (Fig. S4).
5. (a) Trokowski, R.; Akine, S.; Nabeshima, T. Chem. Commun. 2008, 889–890; (b)
Trokowski, R.; Akine, S.; Nabeshima, T. Dalton Trans. 2009, 10359–10366; (c)
Trokowski, R.; Akine, S.; Nabeshima, T. Chem. Eur. J. 2011, 17, 14420–14428.
6. Yam, V. W.-W.; Chan, K. H. Y.; Wong, K. M.-C.; Chu, B. W. K. Angew. Chem., Int.
Ed. 2005, 44, 791–794.
1
1
1
Acknowledgments
7. Moriuchi, T.; Yamada, M.; Yoshii, K.; Hirao, T. J. Organomet. Chem. 2010, 695,
2562–2566.
This research was financially supported by Grants-in-Aid for
Scientific Research from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan.
8. (a) Zhou, X.; Zhang, H.-X.; Pan, Q.-J.; Xia, B.-H.; Tang, A.-c. J. Phys. Chem. A 2005,
109, 8809–8818; (b) Shikhova, E.; Danilov, E. O.; Kinayyigit, S.; Pomestchenko,
I. E.; Tregubov, A. D.; Camerel, F.; Retailleau, P.; Ziessel, R.; Castellano, F. Inorg.
Chem. 2007, 46, 3038–3048.
Supplementary data